
AD D I N G
MU L TI P A TH I N G

CA P ABI L IT I ES T O L V M

STEFAN BADER

LINUX−KONGRESS 2002

I B M D E V E L O P M E N T , G E R M A N Y

A D D I N G M U L T I P A T H I N G C A P A B I L I T I E S T O
L V M

LINUX−KONGRE SS 200 2

T A B L E O F C O N T E N T

1 INTRODUCTION...1

2 MULTI−PATH APPROACHES IN LINUX..3

2.1 Extending the SCSI mid−layer..3

2.2 Generic extensions to the block layer..3

2.2.1 MD multi−path personality..4

2.2.2 EVMS multi−path module...4

2.2.3 Multi−path handling in LVM..4

3 LVM MULTI−PATH DESIGN..5

3.1 Requirements..5

3.2 General design..6

3.3 Changed and additional data structures...6

3.4 The IO scheduler..10

3.5 The end IO function...11

3.6 Error handling..12

4 LINKS..13

Stefan Bader Table of Content − Page I

A D D I N G M U L T I P A T H I N G C A P A B I L I T I E S T O
L V M

LINUX−KONGRE SS 200 2

Figures
Figure 1: Connecting single path devices 1
Figure 2: Connecting multi−path devices 2
Figure 3: Multi−path enhancements to LVM 5
Figure 4: The IO scheduling algorithm 10

Stefan Bader Table of Content − Page II

A D D I N G M U L T I P A T H I N G C A P A B I L I T I E S T O
L V M

LINUX−KONGRE SS 200 2

1 I N T R O D U C T I O N

When looking at the way storage devices are connected to a computer there was one
big difference between personal computers and workstations on the one side and
mainframes on the other side. For the former this looked like the image below.

Any connected device can be associated with exactly one host controller. There can be
several host controllers and each controller can be responsible for several devices but
the path that data traverses on it’s way is always the same. This is the way IDE or
parallel SCSI works.

While the data on the storage device can be protected using RAID systems this
doesn’t increase reliability of the transfer between computer and storage. If one
controller or cable/bus fails this means all devices that are connected to this chain
can’t be accessed anymore. The data is safe but this means service outage.

Since downtime in the mainframe world always was a critical issue, alternate
approaches to this were established quite a long time ago. Figure 2 shows how the
single path example would change if two disks had alternate paths.

Now, should one adapter fail there is still another one left to talk to the device. Main−
frame specific device attachments (e.g. ESCON) handle path failures transparently in

Stefan Bader Introduction − Page 1

Figure 1: Connecting single path devices

Disk #1 Disk #2 Disk #3 Disk #4

Adapter #1 Adapter #2

A D D I N G M U L T I P A T H I N G C A P A B I L I T I E S T O
L V M

LINUX−KONGRE SS 200 2

hardware. So an operating system won’t even notice single path failures. However
with the introduction of SCSI it is necessary that the operating system is aware of this
redundant hardware layout. This is true not only for the mainframe environment but
also for storage area networks (SAN) and also some special parallel SCSI boxes.

If the operating system is aware of multiple data paths it can also use them to increase
the throughput to or from the devices (load balancing).

However, even with multiple paths, data cannot be transferred faster than the storage
device can handle it. So it is unlikely that performance would increase for parallel
SCSI boxes but in the SAN environment this could make a difference.

Stefan Bader Introduction − Page 2

Figure 2: Connecting multi−path devices

Disk #1 Disk #2 Disk #3 Disk #4

Adapter #1 Adapter #2

A D D I N G M U L T I P A T H I N G C A P A B I L I T I E S T O
L V M

LINUX−KONGRE SS 200 2

2 M U L T I − P A T H A P P R O A C H E S I N L I N U X

There are several approaches that were made to add multi−path capabilities to Linux.
The following section is meant to give a general overview on these approaches.

2.1 EXTENDING THE SCSI MID−LAYER

The current SCSI implementation breaks the driver roughly into three parts: the low−
level driver, the mid−layer and the device driver. The low−level drivers handle the
communication to host adapters and are very hardware specific. On the other side
there are device drivers for each “type” of SCSI device (disk, tape, generic). These are
specific to their class of devices. Between them the SCSI mid−layer handles every−
thing that is common to the SCSI protocol.

Extending the mid−layer would have the advantage of being closer to the supported
hardware. Most of the currently available storage devices are SCSI devices. So the
missing support for other flavors of storage devices would have little impact. This
approach would also hide additional paths from the upper layer, which means that
only one device is visible to the block device layer. This saves major/minor1 numbers
and prevents accidentally accessing the same device using different block devices.

The downside is that the SCSI mid−layer is about to be removed in Linux 2.5. And o
there is also the problem that a lot of SCSI mid−layer code expects a device to be
connected to a specific host.

2.2 GENERIC EXTENSIONS TO THE BLOCK LAYER

At the time of writing there are three approaches that can be counted as block layer
approaches. The multi−path personality of the multiple disk (MD) soft−RAID driver,
the additions to LVM. And finally a multi−path module for the enterprise volume
management system (EVMS) which is, not yet, part of the standard Linux kernel.

1 In 2.4 a block driver has to use a unique major−minor number combination for every

partition it provides. Since the range for both numbers is 0 to 255 this might be a problem
if there are many block devices.

Stefan Bader Multi−path approaches in Linux − Page 3

A D D I N G M U L T I P A T H I N G C A P A B I L I T I E S T O
L V M

LINUX−KONGRE SS 200 2

2.2.1 MD MULTI−PATH PERSONALITY

This has been added to the main kernel stream with Linux 2.4.13 and adds a new
personality2 to MD. Currently there is only “failover” support which means if one path
fails the next available path is used. Failed paths stay in the disabled state until they
are enabled again with some command line tool. New paths have to be added manu−
ally by updating the MD configuration file.

2.2.2 EVMS MULTI−PATH MODULE

EVMS is a device mapper project that aims at integrating everything that is related to
device management. They integrate partitioning and file system management support
as well as MD or LVM functionality (beside other volume group support). The multi−
path module was introduced with the 1.0 release of EVMS. However it currently
supports a very host−specific type of storage devices only, which is the major draw−
back of that implementation.

2.2.3 MULTI−PATH HANDLING IN LVM

This was the aim of the project described in this document. What made LVM inter−
esting for the multi−path additions was its unique device ID that gets written to
devices as a part of the LVM meta−data and the way volume groups are built on
startup which is not based on a static configuration file but on the meta−data that is
found on the devices available.

2 In MD each personality normally implements one specific type of RAID (striping,

mirroring and so on). The idea is that multiple paths are in some way related to mirroring.

The difference is that with multiple paths you can write to any device while you have to
write on every device to do soft−mirroring.

Stefan Bader Multi−path approaches in Linux − Page 4

A D D I N G M U L T I P A T H I N G C A P A B I L I T I E S T O
L V M

LINUX−KONGRE SS 200 2

3 L V M M U L T I − P A T H D E S I G N

This section details the LVM approach mentioned in the previous paragraph. One
important goal was to keep the enhanced LVM code compatible to the existing imple−
mentation. So that changing the meta−data that gets written to the devices was not an
option. This also implies that the only allowed changes to the interface between LVM
utilities and the kernel would be additions, so that the using older utilities would still
be possible.

3.1 REQUIREMENTS

Since LVM − as any other block device handler − operates on other block devices,
there must be a visible device for every path. “Visible” meaning it is visible as an
independent device to the block layer (or more technically has its own entry in the
generic disk structures).

Since LVM doesn’t know anything about special hardware it is necessary that the
hardware, or the specific device driver, can handle requests to any of these path

Stefan Bader LVM multi−path design − Page 5

Figure 3: Multi−path enhancements to LVM

L
V

01
L

V
02

L
V

03

Disk #1

/dev/sdb

/dev/sdc

B
lo

ck
 D

ev
ic

e
L

ay
er

Disk #2

Disk #3

/dev/sda

/dev/sdd

P
at

h
 #

0
P

at
h

 #
0

P
at

h
 #

0
P

at
h

 #
1

P
V

 #
1

P
V

 #
2

P
V

 #
3

V
G

01

A D D I N G M U L T I P A T H I N G C A P A B I L I T I E S T O
L V M

LINUX−KONGRE SS 200 2

devices without special intervention. Some devices do but would give very bad
performance if there are many path changes. For these devices it should be possible to
do only failover and no load balancing.

3.2 GENERAL DESIGN

To decide which block device is part of a logical volume LVM uses the meta−data
written to every device. Part of this data is a unique device ID. This ID is now also
used to detect multiple paths to the same device.

The way LVM treats a physical volume is enhanced to support a physical volumes
consisting of up to 16 block devices which make up the paths. This adds one level of
indirection to the mapping between logical and physical volume.

Without multi−path capabilities a logical volume consists of several physical extends
which belong to one of the physical volumes of the volume group. A physical extend
is the smallest amount of storage that LVM takes from a physical volume to assign it
to a logical volume. For a given offset into a logical volume LVM has to translate that
into a logical extend (that is a certain offset into a physical volume) and the offset
within that physical extend.

To make this translation faster the internal representation of a physical extend is
linked directly to a block device. This would make it very hard to add the multi−path
layer. It would make the new lookup much slower if the code has to search through all
physical volumes to find the one specified in the mapping and to decide then which
path device should be used. To add all the path information to the lookup table would
lead to much duplicated information since that would have to be added to every map
entry. So now the mapping table holds the link to the physical volume structure and
this holds the information about block devices.

3.3 CHANGED AND ADDITIONAL DATA STRUCTURES

One general change that had to be made affects the way LVM translates physical
extends into sectors on a physical volume. The direct approach would be to replace the
device link with the link to the physical volume. But that would require the tools to
know about that change and prevent older tools from working if they would be used
on a patched LVM module.

Stefan Bader LVM multi−path design − Page 6

A D D I N G M U L T I P A T H I N G C A P A B I L I T I E S T O
L V M

LINUX−KONGRE SS 200 2

Because of this the new mapping is used only within the kernel module. Tools present
the same structures as before and the kernel code translates the table at the time the
data is read from user space. The way back to user space works similar. The map is
translated back and then written to user space.

typedef struct {

 kdev_t dev;

 uint32_t pe; /* to be changed if > 2TB */

 uint32_t reads;

 uint32_t writes;

} pe_t;

/* This structure will be used only in the kernel */

typedef struct {

 uint32_t devno;

 uint32_t pe; /* to be changed if > 2TB */

 uint32_t reads;

 uint32_t writes;

} le_t;

typedef struct lv_v5 {

...

#ifdef __KERNEL__

le_t *lv_current_pe;

#else

pe_t *lv_current_pe; /* HM */

#endif

...

} lv_t;

This change by itself doesn’t add any new functions to the code. To get LVM to
recognize multiple paths there are further changes needed. Again this has to be done
carefully in order to prevent problems with older tools. This time however it is not
enough to hide elements inside the kernel since the path detection and setup has to be
done in user space.

Stefan Bader LVM multi−path design − Page 7

A D D I N G M U L T I P A T H I N G C A P A B I L I T I E S T O
L V M

LINUX−KONGRE SS 200 2

The kernel module itself doesn’t do much about discovery. That is all done by user
space tools (namely vgscan). These tools create the complete kernel structures and
pass them to the kernel via IOCTL calls. Since the kernel structure for physical
volumes is enlarged by the additional path information all IOCTL calls that pass this
structure along would get into trouble. This is prevented by adding new versions of
these calls (vgcreate, vgextend and pvstatus) which will only be used be the patched
tools.

Now information about the paths has to be added to the internal representation of the
physical volumes.

typedef struct pv_v2 {

...

char pv_name[NAME_LEN];

kdev_t pv_dev;

...

struct block_device *bd;

char pv_ uuid[UUID_LEN+1];

uint32_t pe_start;

pv_path_t pv_path[PV_MAX_PATHS];

unsigned int pv_paths;

unsigned int pv_current_path;

int pv_path_kept;

#ifdef __KERNEL__

spinlock_t pv_lock;

spinlock_t pv_path_lock[PV_MAX_PATHS];

struct block_device *pv_path_bd[PV_MAX_PATHS];

#else

char padding[512];

#endif

} pv_t;

Stefan Bader LVM multi−path design − Page 8

A D D I N G M U L T I P A T H I N G C A P A B I L I T I E S T O
L V M

LINUX−KONGRE SS 200 2

This layout may look strange but is necessary because most of the structure has to be
compatible with the original one. So because the utilities pass this structure to the
kernel whenever physical volumes are involved, all new elements have to be at the
end.

For the new tools to work with unmodified kernels, the structure must still contain
sensible values for the block device (pv_name, pv_dev and bd). The tools do this by
setting this elements to the same values as the first path. To prevent the first path from
changing too often, all paths are ordered by major and minor number, so the first path
is always the device with the smallest major−minor combination.

The spinlock elements are hidden from user space since there is no need for the tools
to know about them. Instead there is some padding space that must always be larger
than the size of the structure in kernel space.

typedef struct {

kdev_t path_dev;

unsigned int path_weight;

lvm_path_state_t path_state;

unsigned int path_fail_count;

unsigned int path_pending_io;

} pv_path_t;

The pv_path_t structure is the way a path is represented in the physical volume. The
“weight” is used to create groups of paths which will be explained in the scheduler
section. The path state can be set to the following values:

typedef enum {

lvm_path_enabled = 0,

lvm_path_disabled_finish_requests,

lvm_path_disabled_wait_retry,

lvm_path_disabled_retry,

lvm_path_disabled,

lvm_path_invalid = −1

} lvm_path_state_t;

Stefan Bader LVM multi−path design − Page 9

A D D I N G M U L T I P A T H I N G C A P A B I L I T I E S T O
L V M

LINUX−KONGRE SS 200 2

Three special “disabled states” are used to re−enable paths automatically. A path that
fails is put into disabled_finish_requests state if there are still some requests processed
by the path device. After the last request reports back that state is changed to
disabled_wait_retry. Now, the path is skipped for a certain amount of requests. After
that the state is set to disabled_retry and one request is sent to that path. If that request
completes successfully the path is enabled again. Otherwise the path is put back into
disabled_wait_retry and the procedure starts again. If the path is put into the disabled
state there is no automatic recovery.

3.4 THE IO SCHEDULER

For any new request that gets sent to a logical volume the first step is to find out to
which physical volume and offset this request would be mapped. This is the standard
way LVM maps logical volumes to physical ones.

The difference in the multi−path case is that after finding a physical volume the IO
scheduler chooses one of the paths to which the request is sent. The first mapping
changes the sector and the device of a request, the second one only the device.

Stefan Bader LVM multi−path design − Page 10

Figure 4: The IO scheduling algorithm

Return selected path
Test next path

Used
before?

Stay on
path?

Select this path

Should
retry?

Path waits
for retry?

Path
enabled?

Lesser
weight?

Waiting for
less IO

More paths
available?

Return failure

Selected
path ok?

No path selected

Select this path

N

N

N

N

N

N

N

N

N

A D D I N G M U L T I P A T H I N G C A P A B I L I T I E S T O
L V M

LINUX−KONGRE SS 200 2

Figure 4 shows the implemented scheduling algorithm. The first step is to check
whether the path that was used the last time has not been used for a certain number of
requests. The goal is to cluster requests which makes it more likely that the device can
merge them into bigger request blocks for more efficient handling.

If the path already has been used more often than defined in the scheduler logic, a new
the path will be chosen. There are several requirements the new path has to fulfill.
First of all, in case of error recovery, the path may not have been used for that request
before. Then the algorithm looks at the weight and the number of unfinished requests.

The weight must be less or equal to the previously used path as long as there are any
working paths left that match that criteria. Otherwise the path may have a higher
weight.

For paths with the same weight the new path is the one that has the lowest number of
unfinished requests. This results in slower paths being used less often than faster paths
because these will process request at a slower rate.

If there is an eligible path found the multi−path mapper adds a private area that stores
information for the callback and error handling to the buffer head. Then it replaces the
“end IO” function with its own version (the old function pointer is stored in the
private area as well). Finally the number of unfinished request for the selected path is
increased by one and the request is sent to the path device.

3.5 THE END IO FUNCTION

For every buffer head that a block device is done with, the driver calls the b_end_io
function. This is now pointing to the multi−path handler, which first decrements the
number of unfinished requests and then checks whether the IO completed success−
fully. If that is the case it may re−enable the path if the current state is disabled_retry.
After that it restores the saved b_end_io pointer, removes the private data and then
calls the original b_end_io function.

For requests that where not successful the handler puts it into an internal error
handling queue, triggering the error handler which is implemented as an independent
kernel thread. After that the end IO handler returns without any further action.

Stefan Bader LVM multi−path design − Page 11

A D D I N G M U L T I P A T H I N G C A P A B I L I T I E S T O
L V M

LINUX−KONGRE SS 200 2

3.6 ERROR HANDLING

The error handler is a kernel thread that sleeps as long as there are no entries in the
internal error handling queue. For every entry (failed request) it first tests the state of
the used path. If it is enabled then it increments the failure count and if that reaches a
certain value sets the state to either disabled_finish_requests or disabled_wait_retry
depending whether there are still requests pending. If the state is disabled_retry then
that is the result of a failed path test so the state will be disabled_wait_retry, again.

The handler then tries to find a working path that hasn’t been used, yet and if such a
path is found sends the request down that path. Should there be no path left the private
data is removed and the end IO function is restored. It is then called to mark the
request as unsuccessfully terminated.

Stefan Bader LVM multi−path design − Page 12

A D D I N G M U L T I P A T H I N G C A P A B I L I T I E S T O
L V M

LINUX−KONGRE SS 200 2

4 L I N K S

Logical Volume Manager: http://www.sistina.com/lvm

The EVMS project: http://sourceforge.net/projects/evms

The kernel: http://www.kernel.org

Stefan Bader Links − Page 13

