ISDN4Linux, CAPI4Linux, CAPI4Hisax and other cute acronyms:
The ISDN subsystem in the Linux kernel

Kai Germaschewski
University of Iowa, Department of Physics and Astronomy
208 Van Allen Hall, Iowa City, IA 52242, USA
(Dated: August 14, 2002)

During the Linux kernel 2.5 development cycle, the ISDN subsystem in the Linux kernel will
undergo major changes. This paper gives an outline of the layers of the legacy ISDN code, called
ISDN4Linux. The core part of that code, called the ISDN link layer, is a multi/demultiplexing layer
which coordinates data exchange between hardware drivers on one side and applications using ISDN
service on the other side.

We will show how replacing this layer with a CAPI based solution, called CAPI4Linux, benefits
both hardware drivers and applications. CAPI is an open standard (”Common ISDN Application
Programming Interface”), which provides a standard interface to using ISDN communication services
independently of the actual hardware and drivers used. In contrast to the old ad-hoc interface which
was extended bit by bit to match growing requirements, CAPI is a well known and documented
interface. Porting userspace applications from and to other OS’s is simplified a lot using a common
API. On the driver side, an obvious advantage is accomplished for so-called active ISDN cards,
which implement the CAPI interface in firmware. They can now be interfaced directly to the kernel
CAPI layer without being translated back and forth from the old ISDN link layer API.

However, an overwhelming market share is owned by so-called passive ISDN adapters. They
do not come with a processor of their own but expect the host processor to handle the ISDN
protocols, call control and the like. Linux has a driver which handles almost all existing passive
cards and implements the necessary protocol layers. Currently this driver ("hisax”) interfaces to
the old ISDN4Linux API, rendering it unusable with the CAPI4Linux subsystem. We describe
the conversion of this driver to an open source CAPI compliant driver (the project was named
”CAPI4HiSax”), which is an essential building block on the way towards the new CAPI based

ISDN layer.

INTRODUCTION

ISDN (Integrated Services Digital Network) was
introduced as the successor to the so-called POTS
(plain old telephony system). In course of the digi-
tal age, telephone companies replaced old analogue
or even mechanical switches with modern digital
exchanges. Audio is digitized right at the interface
to the local exchange, and all further processing
happens digitally, until the digital stream is con-
verted back to the audio at the interface to the
receiver’s phone line.

Digital exchanges provide a large set of addi-
tional features, starting from services like caller ID
and extending to call forwarding and conferencing.
The natural way to provide access to these features
is to extend the digital part of the connection into
the customer’s home, and this is what ISDN does.

A normal basic rate ISDN interface provides two
B-channels and one D-channel on the so-called dig-
ital SO bus installed in the customer’s home. A
B-channel offers 64 kbit/s bandwidth, which can
be used to transfer speech in normal phone qual-
ity or to transfer digital data directly without first
converting it to audio using a modem (which would
than get digitized again at the local exchange be-
fore further transmission). Call control and addi-
tional services are handled out-of-band using the
D-channel which has 16 kbit/s bandwidth. So the
number we want to call is not transmitted on the

actual line using DTMF encoding, but by sending
a digital SETUP message on the D-channel. The
exchange will assign a B-channel to the connection
when it gets established.

Setting up a digital connection works the same
way, sending a SETUP message on the D-channel,
this time indicating that the B-channel will be used
for unrestricted digital information. The entire con-
nection setup can happen in less than one second as
opposed to about 30 seconds for a modem connec-
tion. For one reason, sending the number directly
in a digital message is faster than converting it to
DTMF tones and transferring those. The main ad-
vantage is that the connection is entirely digital
end-to-end, though, i.e. the modulation / demod-
ulation to audio and the related handshaking and
modem training are not necessary.

Computers can be hooked up to the ISDN SO
bus directly, using ISDN adapters, which may be
actual ISA or PCI extension boards or external de-
vices which connect via USB, parallel port or a se-
rial port. Some devices actually present themselves
like a modem to the computer. These devices can
be treated exactly like an analogue modem from
the computer’s point of view and are thus not cov-
ered in this paper, which deals with devices which
present the actual ISDN interface to the computer.

This paper is structured as follows: We start
with giving an overview of the history of the ISDN
subsystem in the Linux kernel. Detailing the evo-

lution of ISDN4Linux, it also becomes clear which
deficiencies exist in the current solution. We will
show how these deficiences can be overcome dur-
ing the move to a new CAPI based ISDN subsys-
tem. First, we introduce the general concept of
CAPI, which is an hardware and operating system
independent programming interface for using ISDN
services. We then show how this API has been im-
plemented in the Linux kernel and at the userspace
level.

Finally, we present an overview of the work which
needs to be done to adapt the HiSax driver to the
new CAPI based subsystem. It consists of splitting
HiSax into the protocol handling part and actual
hardware drivers on the other hand. Furthermore,
the interface to the old ISDN4Linux link layer will
be replaced by an interface to the kernel CAPI
layer.

HISTORY OF THE ISDN SUBSYSTEM IN
THE LINUX KERNEL

In the beginning of the ISDN days, two pack-
ages to support ISDN cards under Linux were de-
veloped, the Urlichs ISDN by Matthias Urlichs and
ISDN/ Linux by Fritz Elfert. This was roughly in
the Linux kernel 1.2 days, and since at that time the
author did not care about ISDN in the least, he can-
not really comment on specific advantages or disad-
vantages. At a late point during the 1.3 Linux ker-
nel development cycle, version 1.3.69, ISDN4Linux
was merged into Linus Torvalds’ official kernel tree.

Beginning at that time, ISDN4Linux was offi-
cially part of the Linux kernel which has its ad-
vantages, for example easy availability to interested
people who do not want to go through the trouble
of downloading CVS developer versions and patch-
ing their kernels, but it also brought downsides,
in particular ISDN became Linus Torvalds’ most
prominent example on how not to do development,
maintainance and merging with him.

The author first came into contact with ISDN
as he moved in together with a roommate and
they decided to get an ISDN line. Planning to use
ISDN under Linux, he purchased a Elsa Quickstep
1000 PCI ISDN card, since Elsa supplied the Linux
ISDN developers with hardware specs and also sup-
ported the certification of the HiSax driver under
the ITU approval tests.

These were about kernel 2.0.35 times, the
ISDN4Linux in the kernel was up-to-date and in
good shape. The original teles driver by Jan van
den Ouden had just been replaced by the HiSax
driver written by Karsten Keil, which supported a
number of additional passive ISDN cards. However,
the Redhat distribution, at that time mainly tar-
geted on the Northamerican market, did not sup-

port ISDN out of the box, so setting up ISDN ser-
vices needed some handmade scripting, which how-
ever had the nice side effect of getting familiar with
the concepts and commands of ISDN4Linux.

The main focus of ISDN4Linux was supporting
network device and emulated modem support on
top of ISDN, particularly useful for setting up con-
nections between remote computers and also pro-
viding some answering machine type services anal-
ogous to those of voice capable modems.

The author’s first real involvement with the ker-
nel ISDN stack happened when he decided to write
some tool to activate and deactivate Call Forward-
ing services using the ISDN card. Here, open source
really showed its strengths, having the sources
available and with the necessary standards doc-
uments from the ITU/ETSI at hand, it provides
the possibility to everyone to adapt and extend to
their needs. The main problem in the implementa-
tion was actually to find a clean way to interface to
userspace, since ISDN4Linux was not designed to
handle supplementary services like call forwarding.

In the 2.1 development cycle, the ISDN main-
tainance problems already known from 1.3 (inclu-
sion after code freeze) and 2.0 recurred. The ISDN
developers preferred working on their CVS devel-
opment tree and only after they were sufficiently
happy with a development version which was sta-
ble and tested, they would try to sync with Linus
Torvalds.

This way of maintainance is very much incom-
patible with Linus Torvalds, who prefers to get fre-
quent nicely separated patches which fix one prob-
lem at a time instead of large patches once in a
while. The latter kind tends to basically replace
one version of the subsystem with a new one, con-
taining a large mix of fixes, cleanups and improve-
ments, making it impossible to grasp what each
change does. So both sides got frustrated with the
not working merging process during 2.1 and the
development version diverged even more from the
kernel code. Since the version in the Linux de-
velopment tree was basically unmaintained, it be-
came unusable, so people using or testing ISDN
had to use the CVS development version, adding
to the deserted state of ISDN4Linux in the ker-
nel tree. Again, as code freeze time approached
for 2.1, the ISDN developers realized that it was
time to push their new version to Linus, but due to
the large amount of changes and late time in the
development cycle, Linus rejected the patches and
Linux kernel 2.2 appeared with a mostly unusable
ISDN4Linux subsystem. Users were forced to fall
back to the ISDN4Linux CVS version, and with
noone actually using the broken version in the offi-
cial 2.2, it took a long time to have it fixed and up-
dated. Eventually, with the help of Alan Cox, who
had a more pragmatic approach to maintainance,

kernel versions after 2.2.12 or so had a usable ISDN
subsystem.

Another issue had contributed to the
ISDN4Linux maintainance problems, the fact
that a lot of work was spent on ISDN4Linux at
about 2.0.30, adding substantial improvements
and a new driver, HiSax, which supported many
new passive cards. Since 2.0 and 2.1 development
was done on two different CVS branches, these
branches diverged and 2.0 was quickly far ahead of
the 2.1, causing a lot of effort to get the versions
resynced again later.

To avoid this kind of problem, it was decided
to keep only one CVS branch from that time on,
which would work for all supported kernel versions.
Karsten Keil created a small parser, which would
generate code for 2.2 and 2.3/2.4 out of that com-
mon source.

This approach worked nicely for many small triv-
ial changes (PCI resource handling, new wait queue
interface etc.), and it also worked sufficiently well
for some larger adaptions, as for example the up-
dated softnet/tbusy handling. On the other hand,
it was not able to support larger changes, like for
example a general cleanup of the ISDN4Linux link
layer, replacing the global cli()/sti() locking with
spinlocks and similar things. Such changes, while
appropriate for 2.3, would have been too large and
experimental for 2.2, so core changes were kept to
a minimum allowing for a working ISDN4Linux in
kernels 2.2 and 2.3/4. Another factor was of course
that a working ISDN layer gave little incentive to
spend a lot of time rewriting things (and thereby
breaking it in all possible ways at least once), so
most work was spent on additional hardware sup-
port, mostly by Karsten Keil, Werner Cornelius
and Armin Schindler.

The author, initially motivated by the lack of a
sensible userspace for extensions of ISDN4Linux as
the Call Forwarding services, spent a lot of time
working on a CAPI interface for HiSax, and other
additional features like an ASN.1 parser needed
for the protocol side of several supplementary ser-
vices. Doing this development outside of the nor-
mal CVS repository and of course outside of the de-
velopment kernel, he would learn a lot of valuable
lessons about diverging versions and merge prob-
lems which lead to a point where it actually makes
sense to start over rather then attempting an im-
possible merge.

At the same time, the 2.3 development cycle was
getting closer to the stabilizing phase, and again
the ISDN4Linux version in the development kernel
was getting neglected. At this point, the author
started to make necessary adaptions himself, and
commit them to the ISDN4Linux repository. After
some time of seeing these nicely separated changes
accumulate to big patches between CVS and Li-

nus’ version, he decided to try to submit patches
to Linus himself, reducing the diff size between 2.3
and CVS. Most of the ISDN developers preferred to
spend their time doing actual coding and testing in-
stead of doing the tedious chore of separating and
explaining patches, and emailing them to Linus.
So the author took over this task, learning gradu-
ally about the way Linus prefers his patches, when
to resubmit patches when they have been silently
dropped, and of course about the excitement of see-
ing patches one submitted or even wrote oneself
getting merged into Linus’ official tree. After not
too long, the merging process worked pretty well,
and eventually, after having performed the task for
about a year, the author decided to add himself to
the MAINTAINERS file in 2.4.4.

Not too much happened during the 2.4 kernel
series, some preparational went in for breaking up
the monolithic HiSax design, which traditionally
is one big module which supports more than 40
different kinds of ISDN hardware. The goal is to
have HiSax as the protocol layer in one module,
and then add additional modules for the different
kind of ISDN boards, also catering for hotpluggable
hardware.

Now, going from the past to the future, what
is expected to be done during the 2.5 develop-
ment cycle? The stated goal is to declare the old
ISDN4Linux link layer obsolete and replace it by
a new CAPI-centric subsystem. The active AVM
cards have always supported CAPI directly, using
their onboard processors and firmware, and a CAPI
subsystem with the basic features (CAPI interface
to userspace and PPP connectivity) exists. 2.5
has seen some restructuring of the ISDN code lay-
out and improvements and cleanups to the CAPI
framework, though that is not entirely finished yet.
So the most needed step is to convert the HiSax
driver to the new CAPI interface — the new code ex-
ists, but it will be a substantial amount of work to
merge it to current 2.5 and break it up into usable
pieces for submission to Linus. So the ISDN sub-
system is on track, but lagging behind the timeline
the author would have imagined. Since the frame-
work part of the work is accepted and part of the
tree, the remaining work is not adding features, but
rather cleaning up and adapting, so even if part of
that work happens after feature freeze, the stated
goal seems achievable until 2.6 is released.

ISDN4LINUX

Using material from an ISDN workshop in 1998
[6], we outline the basic structure of ISDN4Linux
in the following. Nothing substantial did change
since that time, though new features were added,
some times further obfuscating the code.

fdevittylx {dev/isdnctrix
fdevicuix /dev/isdninfo
Kernel Kernel Kernel
Network device| | Serial device Char device
Newe Schnittstelle Schnittstelle Schnittstelle
Komponenten [[[
isdn_v110 . ; isdn_common
_ isdn_net isdn_tty
isdn_budget ¥ } ¥
isdn_timru isdn_ppp isdn_audio

Verbindungs-Statema-
schine/Muliplexer

Lowlevel Treiber Slots (64)

generisches Interface

Lowlevel
Treiber

FIG. 1: Basic structure of ISDN4Linux

ISDN4Linux has two major components: Card
drivers and the ISDN link layer (Figure 1. The
link layer serves two purposes: On the hand it pro-
vides a hardware independent interface to hardware
drivers for a variety of ISDN cards, on the other
hand it interfaces to standard kernel subsystems,
providing network interfaces and tty’s.

ISDN4Linux has provided users with the ISDN
they needed over a wide range of Linux kernel re-
leases. However, unlike most other subsystems, it
has never undergone a major cleanup or rewrite.
The consequence is that deficiencies have become
visible which we list in the following to show how
the new CAPI based solution will improve the sit-
uation.

One major drawback is that only the interface
between link layer and drivers has been abstracted,
no interface between the in-kernel applications and
a common layer providing connection setup and
similar services has been created. So status and
even data messages from the hardware drivers are
just passed to the different submodules one after
another until one finally accepts them:

if (isdn_net_stat_callback(i, c))

return O;

if (isdn_v110_stat_callback(i, c))
return O;

if (isdn_tty_stat_callback(i, c))
return O;

wake_up_interruptible(&dev->drv[di]
->snd_waitql[c->argl);

This also leads to unnecessary code duplication
in isdn_tty.c and isdn net.c, since both have to
handle connection setup and teardown by them-
selves.

The interface between hardware drivers and link
layer is not specified via an exact state machine,

nor is the context in which the callbacks happen
defined, leading to subtle differences between dif-
ferent drivers and the potential of the code magi-
cally breaking under certain circumstances that are
difficult to debug.

Additionally, not all indications available from
the ISDN network are promoted to the ISDN link
layer, rendering certain actions impossible. For ex-
ample, no indication is available for alerting, which
is a message sent by the called device indicating
that it started ringing or something equivalent. So
to initiate a callback connection, we cannot just
dial the number, wait until we get the alerting indi-
cation, and hang up, knowing that the call reached
the other side. Instead we just wait for a certain
amount of time after setup, hoping to guess the
right delay, long enough for the other side to notice
our call, and short enough to not be still busy when
the callback comes in.

The driver / link layer interface is based on
the concept of channels, which correspond to B-
channels on the hardware. However, that does not
offer sufficient flexibility for all applications. For
example, it is possible that an application only
wants to use some supplementary services (e.g. set-
ting up call forwarding), which actually does not
need any B-channel access at all, and one does not
want to block a channel on the interface for such an
application. On the other hand, it is perfectly pos-
sible to have more than <number of B-channels>
calls established at the same time, using features
like call waiting, hold /retrieve or three-way confer-
ence calling.

One last issue with ISDN4Linux is that it ac-
tually tries to do too much in kernelspace, which
would much better be done in userspace. When us-
ing one’s modem to dial-up to some PPP provider,
pppd/chat will take care of the dialing process
from userspace. Only after the connection is es-
tablished the connection will be switched to do
transmiting/receiving PPP data packets inside the
kernel, showing up as a pppX network interface.
ISDN4Linux, on the other hand, does the entire
connection setup and teardown inside the kernel,
only using a userspace ipppd to do the actual PPP
negotation. Apart from the added complexity in-
side kernelspace, it also proves rather inflexible.
The kernel needs to know about the numbers to
dial out to, which numbers to allow dial in from,
handle callback in and out, after which period of in-
activity to hang up and much more. ISDN4Linux
handles the mentioned issues, but there remain al-
ways requests for additional features, like e.g. trig-
gering a dial-in only for certain kind of IP packets.
Complex code in the kernel is only justified, when
similar action cannot be achieved from userspace or
is ruled out by performance reasons. The decision
when and how to dial up to an ISP is certainly not

| flews | Contact u

What is CAPI?

COMMON ISDN INTERFACE

What is CAPI

History COMMON-ISDN-API (CAPI) is an appication COMMON-ISDN-API &2 wel estbished
Present Situation
overall
Technical Aspects
The Association
Compliant Products

Workitems

programming interface standard used to aocess standard. Fotental cost savings wers the

1SDN equipment connected to basic rate dring force for COMMOR-ISDR-AFI

interfaces (BRI) an primary rate interfaces (PR

controller and appication development

Commercial users are rapicly migrating to 15DN

(Integrated Services Digital Metwork) a5 the

withaut being princioal vebicle for data exchange of @ wide

Downloads farced to adist to the idiosncrases of hartvare range of formats.

vendor implementations. 1SDN equipment

vendors in tun il benefit from = wealth of

applicafions, ready ta run with ther ecpipment

FIG. 2: What is CAPI? - Introduction on www.capi.org

performance-critical, though, and can thus much
better be handled from userspace.

COMMON-ISDN-API: CAPI

The established standard programming interface
for using ISDN services is the so-called Common
ISDN Application Programming Interface: CAPIL.
It provides a hardware and call control protocol in-
dependent way of accessing virtually all available
ISDN services from applications. A good introduc-
tion is given on www.capi.org [3] (see Figure 2).

In the following, a short introduction to the us-
age of CAPI will be given, presenting some typical
examples of message flow. This is not intended to
be a course in CAPI programming, though. The
complete standards are available for free download
on the internet [4].

The first step in using CAPI services is
registering the application. using a call to
capi20_register().

unsigned

capi20_register(unsigned MaxLogicalConnection,
unsigned MaxBDataBlocks,
unsigned MaxBDatalen,
unsigned *ApplIDp);

Apart from setting some basic parameters, this
call returns an application id (Applld) which needs
to be used in calls to all other CAPI functions. As
every CAPI function, the capi20_register returns
an error code or success, respectively.

When finished using CAPI services, an applica-
tion should unregister using capi20_release().

unsigned
capi20_release(unsigned ApplID);

Most of the functionality is accessed by ex-
changing messages between the application and
the CAPI, using capi20_put_message() and
capi20_get_message().

unsigned
capi20_put_message (unsigned ApplID,
unsigned char *Msg);

unsigned
capi20_get_message(unsigned ApplID,
unsigned char **Buf);

This API is operating system independent, so
it is possible to share source code between for ex-
ample Windows 98/2000/.. and Linux. Internally,
on Linux libcapi20.so basically maps these op-
erations onto a char device interface to the kernel,
with the correspondence

capi20_register() -> open()
capi20_release() -> close()
capi20_put_message() -> write()
capi20_get_message() -> read()

Using capi20_fileno() it is possible to ob-
tain the file descriptor for a given application
id, enabling it to be used for example in normal
select () loops, at the expense of sacrificing com-
patibility to operations systems other than Linux.

Messages are always acknowledged by the other
side. An application normally sends requests
(*_REQ) messages to the CAPI, which are confirmed
by a corresponding confirmation (*_CONF) message
from the CAPI. Messages sent from the CAPI to
the user are indications (*_IND) and need to be an-
swered with a response (*_RESP).

Messages are exchanged between the applica-
tion and specific entities. The message contains
a target address, which can either be a controller
(physical ISDN interface), a Physical Link Con-
nection Identifier (PLCI), which corresponds to
a call/connection on that interface or a Network
Control Connection Identifier (NCCI), which is
a logical connection on top of the physical one.
(Some protocols allow for multiple logical connec-
tions (NCCIs) on top of one physical connection
(B-Channel), this feature is rarely used, though.)

State machine diagrams are provided that ex-
actly describe which state an entity is in, and which
messages lead to state transitions (Figures 3 and 4).

To show that the control flow in practice is much
less complicated than what the above may imply
for people not familiar with state machines, Fig-
ure 5 shows the message flow for a normal dial-out
connection.

CAPI4LINUX

The central piece of CAPI4Linux is actually
rather simple: It is the module providing registra-
tion services to CAPI drivers and in-kernel CAPI
applications.

For an active AVM card, the driver is compar-
atively simple, it basically takes only care of ex-

‘ PLCI - state machine 1/2 ‘ PLCI - state machine 2/2 ‘

\

CONNECT REQ CONNECT_IND

~ CT CONNECT_RESP
CONNECT_CONF (reject or ignore)

(Info<>0)

INFO_REQ
CONNECT_RESP
(reject or ignore)

FACILITY_IND
(Handset, State = (+))

INFO_IND

p-1, P-2, P-3,
P-4, P-ACT

DISCONNECT_REQ
DISCONNECT_IND

FACILITY_IND
CONNECT CONF (Handset, State = (+)) ALERT_REQ

CONNECT_RESP
(accept)

DISCONNECT_IND

FACILITY-IND
(Handset, Status = (-)) @

DISCONNECT_RESP

INFO_REQ
(overlap sending)

CONNECT
ACTIVE_IND

CONNECT_
ACTIVE_IND

o

SELECT_B_PROTOCOL_REQ

‘Chapter 8: Specifcations for Commercial Operating Systems 127 128 COMMON.ISDN-AP! Version 2.0
4" Ediion

FIG. 3: The PLCI state machine, from [4]

‘ NCCI - state machine 1/2 ‘ NCCI - state machine 2/2

CEDEENO

CONNECT_B3_REQ ~ CONNECT_B3_IND

CONNECT_B3_RESP
(reject)

CONNECT_B3 CONF
(Info< >0)

CONNECT_B3_CONF CONNECT_B3_RESP DISCONNECT_B3_CONF /
accept) (Infc

(Info=0)

nf0<>0) " pISCONNECT B3_REQ

DISCONNECT_B3_IND

©

DISCONNECT_B3_IND

CONNECT_B3_ACTIVE_IND

DISCONNECT_B3_RESP

RESET B3 IND

RESET_B3_IND

RESET_B3_REQ
DATA_B3_REQ

DATA_B3_IND

CONNECT_B3_T90_ACTIVE_IND

Chapter 8: Specifcations for Commercial Operating Systems 129 130 COMMON.ISDN-AP! Version 2.0

FIG. 4: The NCCI state machine, from [4]

changing messages between kernelcapi and the on- 4 on top of the traditional ISDN layers 1 to 3. As

board processor. HiSax already supports all layer 1 to 3 services, the
main work consists in adding the needed conversion

For a passive ISDN card, a CAPI driver is much layer.

more elaborate, it needs to provide ISDN layer 1

to layer 3 services for both D- and B-channels, as The most important in-kernel CAPT application

well as driving the actual hardware. On top of this, is actually a forwarding module to userspace, pro-

it has to convert CAPI messages to and from the viding CAPI services to userspace applications via

upmost layer, so CAPI can be considered a layer a libcapi20.so. The user space library interface

--> CONNECT_REQ(.Controller = 0x01,
.CIPValue = 1, /* digital */
.CallingPartyNumber = 5551234,
.CalledPartyNumber = 022156789,
.B1Protocol = 0, /* HDLC */
.B2Protocol = 0, /* transparent */
.B3Protocol = 0) /* transparent */

<-- CONNECT_CONF(.PLCI = 0x101,
.Info 0) /* initiated */

<-- CONNECT_ACTIVE_IND(.PLCI = 0x101)

--> CONNECT_ACTIVE_RESP(.PLCI = 0x101)

--> CONNECT_B3_REQ(.PLCI = 0x101)

<-- CONNECT_B3_CONF(.NCCI
.Info

0x10101,
0) /* initiated */

<-- CONNECT_B3_ACTIVE_IND(.NCCI = 0x10101)
--> CONNECT_B3_ACTIVE_RESP(.NCCI = 0x10101)
[Actual data exchange using DATA_B3_REQ /
DATA_B3_IND messages]

--> DISCONNECT_B3_REQ(.NCCI = 0x10101)

<-- DISCONNECT_B3_CONF (.NCCI
.Info

0%10101,
0) /* initiated */

<-- DISCONNECT_B3_IND(.NCCI = 0x10101)

--> DISCONNECT_B3_RESP(.NCCI = 0x10101)

--> DISCONNECT_REQ(.PLCI = 0x101)

<-- DISCONNECT_CONF (.PLCI
.Info

0x101,
0) /* initiated */

<-- DISCONNECT_IND(.PLCI = 0x101)

--> DISCONNECT_RESP(.PLCI = 0x101)

FIG. 5: Calling out using CAPI

is to remain fixed, providing the same services to
an application as on various other operating sys-
tems, most notably Windows. The interface be-
tween library and kernel is currently provided by
a single character device, though this may possibly
be changed at a later time.

The main building block of CAPI4Linux is the
module kernelcapi.o. Apart from providing vari-
ous library-type utility functions, its main purpose
is to take care of the message exchange between
applications and drivers. Messages from an ap-
plication are adressed to a specific controller, so
kernelcapi.o will queue the message to the driver

for the addressed controller. In the other direc-
tion, messages from a controller are targeted to a
given application, so again kernelcapi.o will take
care of forwarding it there. To be able to serve
these purposes, it needs to keep track of applica-
tions and drivers, which it can easily do, as it pro-
vides the registration/unregistration interface for
both CAPI drivers and in-kernel applications.

As an example, we show how the driver for the
AVM B1 PCI card registers a CAPI controller.

cinfo->ctrl.driver_name = "blpci";
cinfo->ctrl.driverdata = cinfo;
cinfo->ctrl.register_appl = bl_register_appl;
cinfo->ctrl.release_appl = bl_release_appl;
cinfo->ctrl.send_message = bl_send_message;
cinfo->ctrl.load_firmware = bl_load_firmware;
cinfo->ctrl.reset_ctr = bl_reset_ctr;
cinfo->ctrl.procinfo = blpci_procinfo;

cinfo->ctrl.ctr_read_proc = blctl_read_proc;
strcpy(cinfo->ctrl.name, card->name);
SET_MODULE_OWNER (&cinfo->capi_ctrl);

retval = attach_capi_ctr(&capi_ctrl);

On the other hand, kernelcapi .o provides func-
tions for the drivers to call, most importantly:

void
capi_ctr_suspend_output(struct capi_ctr *);

void
capi_ctr_resume_output(struct capi_ctr *);

void

capi_ctr_handle_message(struct capi_ctr *,
ul6é appl,
struct sk_buff *);

This interface is similar to the interface an eth-
ernet driver uses to register a struct net_device.

Once a driver detects its hardware, it will regis-
ter the controller using attach_capi_ctr (), which
corresponds to register netdev(). When an ap-
plication registers with kernelcapi.o, the driver’s
register_appl() method is invoked, analogous to
open() on a net_device. kernelcapi.o will also
take care of incrementing the driver module use
count before calling into the driver, so that it can-
not be unloaded while in use.

Messages to a controller are transferred
using the send message() method (equiv-
alent to hard_startxmit()). As in the
network stack, calls to send message()

shall be serialized, and the driver can call
capi_ctr_{suspend,resume} output() to enable
/ disable receiving messages (corresponding to
netif {wake,stop}_queue()). The container
used for CAPI messages is the standard Linux
socket buffer struct sk_buff.

Messages from the controller to an application
are sent using capi_ctr_handle message(), corre-
sponding to netif_rx(). This function can be called
from hard TRQ context. kernelcapi.o will queue

the message and hand it on to the addressed ap-
plication in softint context. For drivers which call
capi_ctr_handle message() from non hard IRQ
context, it may make sense to add a _ni variant
which skips this transformation. A driver for a pas-
sive card will typically do a lot of processing after
receiving a D- or B-channel frame from the hard-
ware, so it will switch to softint processing before
even generating the CAPI message to be sent to
the application.

The other side of kernelcapi.o is the inter-
face to in-kernel CAPI applications, defined in
include/linux/kernelcapi.h [5]. This interface
is constructed to be similar to the userspace CAPI
interface, but has been adapted to better fit the
general Linux kernel design.

ul6 capi20_isinstalled(void);
ul6 capi20_register(struct capi20_appl *ap);
ul6 capi20_release(struct capi20_appl *ap);
ul6 capi20_put_message(struct capi20_appl *ap,
struct sk_buff *skb);
ul6 capi20_get_manufacturer(u32 contr,
u8 buf [CAPI_MANUFACTURER_LEN]) ;
ul6 capi20_get_version(u32 contr,
struct capi_version *verp);
ul6 capi20_get_serial(u32 contr,
u8 serial [CAPI_SERIAL_LEN]);
ul6 capi20_get_profile(u32 contr,
struct capi_profile *profp);
int capi20_manufacturer(unsigned int cmd,
void *data);

Applications do not use a number (application
id) to identify themselves, but rather a struct
capi20_appl, which is used by kernelcapi.o to
save data related to that application. When
registering, the application provides a callback
(recv_message) which is called to pass on mes-
sages from a controller. The registered struct
capi20_appl is passed as a parameter on callback,
so the application has an easy way of obtaining
a handle to its data and state related to the cor-
responding registration. A callback has been cho-
sen instead of the usual polling or receiving-a-signal
method for a pending message, which is not appro-
priate for kernelspace.

ap->private = cdev;
ap->recv_message = capi_recv_message;
cdev->errcode = capi20_register(ap);

CAPI4HISAX

There are two essential building parts one finds
on all ISDN adapters. First of all, they all pro-
vide an electrical interface to an ISDN SO or U
bus (ISDN layer 1). The integrated circuits which
implement the physical interface normally also in-
clude functionality to provide HDLC framing and
collision recognition on the shared D-Channel. On
the other hand, of course all ISDN adapters feature

static void * __devinit

probe_st5481(struct usb_device *dev,
unsigned int ifnum,
const struct usb_device_id *id)

[...]

SET_MODULE_OWNER (&adapter->hisax_d_if);
adapter->hisax_d_if.ifc.priv = adapter;
adapter->hisax_d_if.ifc.1211 = st5481_d_1211;

for (i = 0; i < 2; i++) {
adapter->bcs[i] .adapter = adapter;
adapter->bcs[i] .channel = i;
adapter—->bes[i] .b_if.ifc.priv =
&adapter->bcs[i];
adapter->bcs[i] .b_if.ifc.1211 = st5481_b_1211;
b_if[i] = &adapter->bcs[i].b_if;

hisax_register(&adapter->hisax_d_if, b_if,
"stb481_usb", protocol);
}

[...]

int
hisax_register(struct hisax_d_if *hisax_d_if,
struct hisax_b_if *b_if[],
char *name, int protocol)
{
[...]
for (i = 0; i < 2; i++)
b_if[i]->ifc.1112 = hisax_b_1112;

hisax_d_if->ifc.1112 = hisax_d_1112;
[...]
}

FIG. 6: Registering a hardware driver with the HiSax
protocol layers

an interface to the host computer, be it ISA, PCI,
USB or even a parallel port interface.

Using these two components, one can build a typ-
ical passive ISDN adapter. It provides access to the
incoming and outgoing D- and B-Channels at layer
1 level via a FIFO buffer mechanism.

Active ISDN cards provide, in addition to the
basic parts, a processor on board, which us-
ing its firmware implements the higher layers
of the ISDN protocols, like the data link layer
(Q.921/LAPD/LAPB) and the application layer
(e.g. X.25, Q.931/DSS1 call control and even
FAX/modem). In some cases, the firmware fur-
nishes a complete CAPI implementation. For such
cards, a driver implementation for the CAPI4Linux
subsystem is very straightforward, it is mostly just
forwarding messages to and from the card, very
similar to what a typical NIC driver does.

The major share of sold ISDN adapters are pas-
sive solutions, though. The main reason for this
is obviously the price, passive cards cost only a
fraction of the active counterparts. When using a
passive card, the host processor has to take over
the handling of the higher layer B-channel pro-

tocols and provide the complete D-channel (call
control) handling. This situation seems somewhat
analogous to the so called winmodems, which are
modems where the host processor has to handle
modulation/demodulation instead of an on-board
DSP. However, since ISDN is already digital, the
effort needed is much smaller.

For a typical application, internet dialup using
synchronous PPP (PPP over ISDN), at layer 1
HDLC framing is needed, which is provided by
most available ISDN adapters in hardware. Layer
2 and 3 are transparent, the next higher layer is
the actual PPP protocol, which is always handled
by the host processor. So the only overhead that
a passive card has over an active one is caused by
usually small FIFO buffers, which increase inter-
rupt load. These FIFOs need typically one TRQ
per 32 octets, as opposed to an active card, which
only needs one IRQ per packet, which can be up to
2048 octets.

For passive ISDN cards, the complete D-channel
/ call control handling is provided by the host pro-
cessor as well. Although not computationally ex-
pensive, it needs a proper implementation of the
associated state machines, which has been avail-
able in the Linux HiSax driver for a long time and
even passed certification procedures.

In the Windows world, each manufacturer nor-
mally provides their own CAPI drivers for their
passive ISDN cards, i.e. the complete implementa-
tion from hardware access over call control to high-
level protocols like fax. In Linux, all processing
above the hardware access is handled by a shared
driver, for an open source solution it does not make
any sense to duplicate these layers.

Splitting HiSax into protocol handling and
hardware drivers

The HiSax driver provides the common upper
layers as well as hardware access to a wide vari-
ety of passive ISDN cards. Whereas traditionally
it is built as one monolithic module, during the on-
going restructuring in Linux 2.5, it will be broken
down into a shared module for the upper layers and
individual modules for hardware access to various
kinds of ISDN adapters. Apart from the added flex-
ibility, this ensures better cooperation with current
Linux kernel APT’s, like the PCI/ISAPnP layer or
Hotplug capabilities.

For some hardware, the splitting has already
been done. As an example, the driver for
ST5481 based USB ISDN adapters is available
as hisax_stb5481.o0. It registers with the nor-
mal hisax.o module (see figure 6), which provides
ISDN layer 2 and higher, while hisax_st5481.0
handles layer 1 and hardware access (using the USB

switch (adapter->type) {
case AVM_FRITZ_PCIV2:
adapter->isac.read_isac
= &fcpci2_read_isac;
adapter->isac.write_isac
= &fcpci2_write_isac;
adapter->isac.read_isac_fifo
= &fcpci2_read_isac_fifo;
adapter->isac.write_isac_fifo
= &fcpci2_write_isac_fifo;
break;
case AVM_FRITZ_PCI:
adapter->isac.read_isac
= &fcpci_read_isac;;
adapter->isac.write_isac
= &fcpci_write_isac;
adapter->isac.read_isac_fifo
= &fcpci_read_isac_fifo;
adapter->isac.write_isac_fifo
= &fcpci_write_isac_fifo;
break;
}

isac_setup(&adapter->isac) ;
[...]

/* xmit on D-channel */
hisax_d_if->ifc.1211 = isac_d_1211;

[...]

static void fcpci_irq(int intno, void *dev,
struct pt_regs *regs)
{
struct fritz_adapter *adapter = dev;
unsigned char sval;

sval = inb(adapter->io + 2);
if (!(sval & AVM_STATUSO_IRQ_ISAC))
isac_irq(&adapter->isac);
[...]
}

FIG. 7: Usage of the shared ISAC/ISAC-SX driver li-
brary code

APT’s, naturally).

Another example is the new driver for the AVM
Fritz!Card PCI, PCI v2 and PnP cards. Since
the hardware on all three of these boards is
very similar, they are all driven by one driver,
hisax_fcpcipnp.o. Again, this driver provides
layer 1 and hardware access and leaves the rest
to hisax.o. The ISDN physical interface and D-
channel access on these cards is provided by a
Siemens/Infineon chip, the so-called ISAC/ISAC-
SX. Since these chips are also used on a variety
of other ISDN cards, it would be wasteful to re-
implement the needed functionality in every driver.
So an additional hisax_isac.o module was created
which acts as a library providing the methods to
drive this kind of chip - as shown in figure 7, the
card driver only needs to provide methods to access
the hardware, the library will then handle receiving
and transmitting on the D-channel.

HiSax interface to CAPI4Linux

Apart from the split-up between hardware /
ISDN layer 1 and the upper layers, the protocol
implementations of various layer 1 to layer 3 pro-
tocols which exist in the HiSax driver today will
be continued to be used in the CAPI version of
the driver. Adapting HiSax basically means re-
placing the existing interface to the ISDN4Linux
link layer with a CAPI based interface. So
drivers/isdn/hisax/callc.c, based on super-
seded assumptions about what features need to be
exported, will go away and implementations of the
various CAPI objects and state machines will take
its place.

We do not intend to describe the new code in
great detail here, but rather present a overview of
the new files in the current CAPI4HiSax develop-
ment version and a description of the code con-
tained therein.

interface and reg-
kernel CAPI layer

e capi.c provides the
istration with the
kernelcapi.o.

e contr.c provides the implementation of the
CAPI controller object, which corresponds to
one ISDN BRI or PRI interface (of which
multiple can exist on one board).

e appl.c provides the implementation of the
CAPI application object, i.e. keeps track of
the applications which registered to use CAPI
services on a controller.

e listen.c provides the implementation of the
CAPI listen state machine, which is a simple
state machine an application uses to deter-
mine which kind of notifications it desires to
receive (e.g. incoming voice calls).

e cplci.c plci.c provides the implementa-
tion of the CAPI PLCI state machine (see
also figure 3). An application always sees
a PLCI as exclusively owned, which makes
sense - you cannot share one connection be-
tween multiple applications. However, at the
point where an incoming call is detected but
not yet accepted, multiple applications may
receive notification of a new PLCI. At the
point where one application accepts the calls,
it is cleared to the other applications. This is
the reason why internally two types of objects
exist, one corresponds to the actual incoming
call, the other one to the indication of that
call to an application. Only after one appli-
cation has accepted the call and it has been
cleared to all others, a one-to-one relationship
between this two objects is established.

e ncci.c provides the implementation of the
CAPI NCCI state machine (see also figure 4).
Since at this time only non-multiplexed B-
channel protocols are supported, there never
exists more than one NCCI per PLCI, but the
implementation is prepared to lift this restric-
tion in case it becomes necessary.

e supp-serv.c asnl_address.c
asnl_basic_service.c asnl_comp.c
asnl_enc.c asnl_aoc.c asnl.c
asnl_diversion.c asnl_generic.c provide
a parser for messages exchanged in order
to use supplementary services. ASN.1 is
a standard which describes how to encode
and decode messages into an octet stream
and is used in the ISDN standards for the
implementation of a variety of supplementary
services. Currently, Call Forwarding and
Advice of Charge services are supported and
can be accessed by applications using the
standardized CAPI messages.

The current status of the development version
of CAPI4HiSax is basically feature complete and
working, but it needs to be adapted and merged
with the current code in Linux 2.5, which is still a
non-trivial effort.

SUMMARY AND OUTLOOK

We have described the history of the ISDN sub-
system in the Linux kernel. ISDN4Linux has done
a good job in satisfying the users’ most popular
needs, in particular synchronous and asynchronous
data connections as well as voice service. The in-
ternal structure stayed basically unchanged since
its introduction in kernel 1.3 and a number of defi-
ciencies have become visible over time.

For the coming stable 2.6 release of the Linux
kernel, it is planned to move the ISDN subsystem
to a CAPI-centric solution. CAPI is a widely ac-
cepted hardware and operating system independent
programming interface to basic and supplementary
ISDN services. This conversion will overcome the
mentioned design problems of ISDN4Linux and the
same time introduce a cleaner, smaller and more
modern ISDN subsystem in the Linux kernel, mov-
ing the policy decisions out to userspace.

The most important milestone in switching to a
CAPI based solution is to provide a CAPI imple-
mentation for passive ISDN cards. We described
how the current HiSax driver will be split into a
hardware independent protocol driver which inter-
faces to submodules driving the actual hardware.
We also presented the structure of the current de-
velopment version, which replaces the interface to

the old ISDN4Linux link layer with a new CAPI
interface.

By the time that Linux kernel 2.6 is released, the
drivers for the active AVM ISDN cards as well as
the HiSax driver for passive ISDN cards will have
been converted to CAPI4Linux. It is planned to
keep the current ISDN4Linux in a working condi-
tion to supply continued support for legacy hard-
ware, though it would be good if these drivers
would be converted to CAPI as well.

Traditionally, not much userspace code taking
advantage of ISDN services except for basic func-
tionality was written for Linux. We hope that with
CAPI providing a commonly accept interface, more
developers get attracted to implementing Linux
based ISDN applications.

There is a lot of room for further improvements
and filling in some gaps. In userspace, a distri-
bution independent way of configuring ISDN hard-
ware and network connections would be useful, and
a nice graphical adminstration tool would definitely
be a nice addition.

vbox, an answering machine code, should be
adapted to CAPI. The GNU Bayonne project [7]
already supports CAPI on Linux, opening the door
to IVR (interactive voice response) applications -
even elaborate voice mail, call forwarding and call-
back solutions are possible with this package. Im-
plementing some of the latest CAPI additions, i.e.
the switching and conferencing API in the HiSax
driver would allow for features otherwise only avail-
able on much more expensive specialized telephony
boards.

Logging tools (in particular isdnlog) should be
extended to work directly with a CAPI based sys-
tem. Also, the implementation of a sophisticated
solution as to when to dial-up and disconnect based

on various criteria is now possible in userspace.

CAPI4Linux will initially lack some features
which were present in ISDN4Linux, like raw IP over
ISDN or an AT modem emulator. The former could
be implemented with relatively little kernel code,
leaving connection setup and teardown to userspace
where it is more appropriate. If the needs arises to
create a modem emulation, useful for legacy appli-
cations that are totally unaware of ISDN and can
only deal with modems, it is now possible to im-
plement this nearly completely in userspace.

In conclusion, we are optimistic to see a much
improved ISDN subsystem in the Linux kernel 2.6,
with the inclusion of an improved kernel CAPI layer
and the port of the HiSax driver to provide a CAPI
interface to passive ISDN cards and adapters.

[1] Website of the International Telecommunication
Union, providing standard documents on ISDN
(non-free),
http://www.itu.int

[2] Website of the European Telecommunication Stan-
dards Institute. Many useful documents about
ISDN are available free of charge,
http://www.etsi.org

[3] Website of the CAPI organization,
http://www.capi.org

[4] CAPI standard documents,
http://www.capi.org/pages/downloads.php

[5] The Linux kernel source, available from
ftp://ftp.kernel.org/pub/linux/kernel /v2.5

[6] Website for ISDN4Linux (unfortunately vastly out
of date),
http://www.isdndlinux.de

[7] The Bayonne project,

http://www.gnu.org/software /bayonne /bayonne.html

