
2002-10-28 David Yang, NTU, Singapore 1

Bluetooth Enabled Embedded
Linux

Linux Kongress 2002

David Xiaoyong Yang
Centre for High Performance Embedded Systems

Nanyang Technological University
Singapore, linuxprotocol@hotmail.com

2002-10-28 David Yang, NTU, Singapore 2

Topics

• Why Bluetooth enabled embedded Linux?
• Embedded Linux for PDA prototype
• Bluetooth
• Conclusion and Future Plan

2002-10-28 David Yang, NTU, Singapore 3

Embedded Systems

• Embedded Systems:
– Every thing non-PC.
– Typically no human intervention. Special

purpose small foot print software in ROM.
Often real-time response. Low power, cost
sensitive.

• Empowered by the wireless RF technology
and various ASIC and microprocessors.

• To be connected and unified.

2002-10-28 David Yang, NTU, Singapore 4

• Bluetooth:
– Cable replacement to unify the short range communication
– RF, BB , … … to software
– Open standard and low cost $5
– Synergy between open standard and open sourced

• Ultimate goal: Software Defined Radio
– Get the software close to the antenna. Configurable, and plug and play..
– Unify the various communication standards, basis for 4G.
– Standard and source code side by side: no ambiguity, unify, fast and

flexible.
– Problem: Generally assuming presence of sufficient band width,

reusable platform, and processing power. Cost.
– Solution: Bluetooth and open source especially Linux is a good starting

point to implement from bottom up to a complex SDR .

Wireless - Bluetooth and SDR

2002-10-28 David Yang, NTU, Singapore 5

Problem and Solution

• Too many standards;
• Too many type to

embedded systems;
• Too much cost;
• Too long development

cycle, yet too short time in
market;

• Too complicated to start
from scratch

– Open and reusable.
– Support various

microprocessor. DIY
– Low cost
– Smaller footprint than

windows
– Better network

performance (socket*
referring to IBM).

– Real time performance
is enhanced.

2002-10-28 David Yang, NTU, Singapore 6

XP Embedded /Embedded Linux
• Microsoft says

– Integrated: tools
– Comprehensive:perfor

mance & reliability
– Unmated: technology

portfolio
– Interoperable:.Net
– Proven: business

model
– Global:support

• Linux folks says
– GNU X-Tools, IDE,

VisualAge(Java), Qt,
Sleepycat(Database)

– Reliable and small.
UcLinux core 800k, yet XP
Embedded core 4.8 MB

– IEEE; IBM, HP, etc.
– Java, XML.
– Successful stories
– Linux distributors and

developers

2002-10-28 David Yang, NTU, Singapore 7

Why Linux need to be
embedded and wireless?

• Linux kernel maintenance problem:
– UNIX Co-creator, Ken Thompson : Linux won’t success in long

run. “Common coupling (dependency) grows exponentially while
the LOC grows linearly.”

– Restructuring kernel with the bare minimum of common coupling.

• An efficient solution:
– Embedding Linux with constrain applied
– Footprint reduced, problem delayed

• The wireless world need a unified open platform. Yet its
operating platform is not dominated by MS or BrandX.

2002-10-28 David Yang, NTU, Singapore 8

Bluetooth enabled embedded
Linux

Wireless, Hand-Held
Device

Host Platform
(Redhat 7.1 Pentium II)

Target (Assabet)
StrongArm1110

OS GUI Applications

Microwindows
FLNX

ViewML Web
Browser

Kernel: ARM
Linux
File System: Ext2
Ramdisk
Lib support:
Touchscreen
PCMCIA

Cross-compilation
Environment
Minicom
Angelboot

BlueZ

Bluetooth
(Microtune,Ericsson)

2002-10-28 David Yang, NTU, Singapore 9

Part I:
The Key points of the Embedded
• The approach.
• The special in embedded. Boot loader,

RAM Disk, and input.
• Debugging for embedded.
• Applications.

2002-10-28 David Yang, NTU, Singapore 10

Approaches

• Using the PDA environment. E.g. Qt-embedded , Qt-
palmtop, pocket Linux.

• Using the commercial distributions. E.g.UcLinux, Hardhat,
Lineo, Ecos.

• Developing and stripping the non-commercial embedded
Linux project. E.g. ARMLinux, Uclinux.

• Growing the Linux from scratch.
The third method is suitable to gain maximum control without
inventing the wheel.

2002-10-28 David Yang, NTU, Singapore 11

The Feasibility Study

2002-10-28 David Yang, NTU, Singapore 12

A Hard Start
Intel StrongARM

SA-1110
NEC MIPS

VR4122
Hitachi (SH3 Series)

SH7709A

Speed (MHz) * (Palm
need about 20-30MHz, 10
times more is desired.)

206 180 133

Memory Bus ROM, SMROM, Flash, SRAM, DRAM,
SDRAM, two PCMCIA sockets

ROM, DRAM ROM, SDRAM, SRAM,
DRAM, Supports two PCMCIA
sockets

MMU
* (not restricted to
2.2.* kernel only)

32-Entry
Maps 4Kbyte, 8Kbyte, 1Mbyte

32-Entry, 1-256Kbyte 128-Entry
Maps 4Kbyte, 8Kbyte

Power Management Unit Normal Mode <240mW
Idle Mode <75mW
Sleep Mode <50uA

Full speed, Stand by, Suspend,
Hibernate

Normal mode,
Sleep mode
Standby mode

Operating Voltage – Core 1.75V 1.8V 1.9V

2002-10-28 David Yang, NTU, Singapore 13

ARMLinux & Microwindows

2002-10-28 David Yang, NTU, Singapore 14

Why ARM Linux and
Microwindows?

• The commercial distributions need certain amount
for support. The developer mailing list is not
available. The latest source is not available.

• The GUI options X, Microwindows and Qt.
• X, though it is not as big as people believe. E.g.

IBM used X for its 2M Linux Watch. The extra
effort required. E.g. Tiny-X.

• Microwindows, $0 cost, and the best combination
with FLNX, ViewML. Qt embedded, not fully
open sourced, the freedom of choice.

2002-10-28 David Yang, NTU, Singapore 15

The Applications and Libraries

• POSE: Palm OS emulator need FLNX.
• ViewML web browser need FLNX.
• Both need the FLNX, a embedded version

of FLTK, which is a library for graphical
display, which supports Windows and
Linux platform (NanoX).

2002-10-28 David Yang, NTU, Singapore 16

The Implementation Outline

Load boot code-Angel
in Flash via JTAG

FLNX, Microwindows

Debug the LCD controller

ARM Linux Kernel with frame
buffer, network, and UNICODE

Applications, web browser
and Palm emulator*
Support for JPEG,
HTTP and wireless

Angelboot for Assabet

Cross-compilation for Arm

Tool chain Ext2 RRAM Disk

Minicom, NFS and DHCP

Debug ViewML and
libraries for JEPG, libwww

Host Microwindows and FLNX

2002-10-28 David Yang, NTU, Singapore 17

Some Examples for Steps

• Angelboot for the Assabet.
• Build the tool chain
• Ext2fs RAM Disk
• LCD controller
• Frame buffer
• Debugging Libraries and Applications

2002-10-28 David Yang, NTU, Singapore 18

Using Angelboot to boot up
• Boot loader: jump, find kernel, load kernel, test and initialisation.
• The host angelboot.

– Synchronize the serial to be with minicom on host.
– “image zImage” and “entry 0xc0008000” “base 0xc0008000” is used to

load the compressed kernel (640kB boot time limitation) or ramdisk and
specify the address in RAM. The values must be consistent with file
arch/arm/mach-sal100/arch.c in the ARM Linux kernel.

– “r0 0x00000000 r1 0x00000019” In RISC, commonly r0 is set to 0. It is
used as ID register for the kernel to discover what type of machine, then
by examining the unique architecture identifier passed in register r1.
Typically for Assabet r1 is set to 19 in Hex.

– Then the kernel can proceed with a number of architecture-independent
initialisations, such as setting up the console, enabling RAM Disk file
systems ……

2002-10-28 David Yang, NTU, Singapore 19

Notes on building the Tool chain
• It consists four parts namely the Bin Utilities (Binutils), the EGCS

C* Compiler, the GLIBC Library (C library), the EGCS C++*
Compiler.

• Precompiled tool chain, Hardhat compiler, LART cross compiler
and skiff.

• Choose the target prefix, arm-linux to work with others. Set the path
“PATH:/skiff/local/bin/$PATH”.

• Reduce footprint? Strip, dynamic lib, or use non standard lib like
uclib. E.g. ViewML web browser is stripped from 6M to 1M.

• Mixing up the cross compilers will lead to segmentation fault.
• To debug, firstly check the program is portable, suitable for cross

compile, e.g. JPEG library. Then check the cross compiler switches
in the make or configure file.

2002-10-28 David Yang, NTU, Singapore 20

Ext2fs RAM Disk
• Ext2fs chosen instead of JFFS, Cramfs, Ramfs due to the maturity

level,ease of starting and popularity.
• RAM disks tend to be small; a compressed disk image might be 1.5-

2.5MB in size. It may need network (PCMCIA) setup scripts,
busybox, tinylogin, strace, e2fsck, mke2fs,etc.

• In a RAMDisk and loopback supported Linux system. The steps are:
♦ %dd if=/dev/zero of=/dev/ram bs=1k count=8192
8 MB for this example. “of=/dev/ram”, where /dev/ram1 (for a
ramdisk). Zero out the area (if=/dev/zero) so that maximal
compression is achieved for the unused blocks of the image.

♦ %mke2fs -vm0 /dev/ram 8192
Then they need to make a file system on it , formatting the drive
♦ %mount -o loop -t ext2 ramdisk /mnt/new-ramdisk
♦ %mount -o loop -t ext2 ramdisk_old /mnt/old-ramdisk

2002-10-28 David Yang, NTU, Singapore 21

Ext2fs RAMDisk(continued)
The switch “loop” enable the loop back device to access an ext2 image. The
'-t ext2 ' reads the super block, the ramdisk, to determine the file system.

♦ copy all stuff (eg: /etc/* /dev/* ...) from the old-ramdisk directory to the new-ramdisk
directory

♦ %umount /mnt/new-ramdisk
Remember to unmount it before extracting it, or it can be out-of sync, or if
“reboot”, the X windows might be corrupted.

♦ %cat ramdisk | gzip -v9 > ramdisk.gz
The level of compression will be about 50% of the space used by the files.
Unused space on the RAM disk will compress to almost nothing. An 8MB
ramdisk can be compressed to 2MB.

• Any modifications to a RAM disk file system will not survive a reset or loss
of power. Fixed size and locking the memory.

• After some work (copied, moved, deleted files), the ramdisk will have dirty
blocks. To get a smaller compressed image, copy the contents to a clean
ramdisk.

2002-10-28 David Yang, NTU, Singapore 22

A simple fix for LCD controller

• Sharp LCD connected to Philips UCD1300
ADC.

Microwindows
ADSMOSE

Problem in
Default driver

Modify IPAQ
driver

Device?Driver?Error 19.
Cannot initialize

Solve the display
problem

2002-10-28 David Yang, NTU, Singapore 23

The Frame Buffer, Libs and Apps
• On the host the X- windows and

frame buffer competing the
resource. Disable X auto start.

• One the target, compensate the
frame buffer and bandwidth

• Debugging for cross compile:
– JPEG: the “rc” switch is missing.
– libwww: http engine. Need to

change the compilation sequence
to avoid x86 only.

– ViewML: fix the link the libwww
xmlparse.h, the JPEG lib, pthread.
Fix the linking problem for JPEG.

– Dynamically linked libs, slow
but small foot point.

viewML

FLNX

Libwww
and pthread

Microwindows and JPEG lib

Linux kernel with frame buffer

2002-10-28 David Yang, NTU, Singapore 24

Known Issues

• Ext2 RAMdisk consume large memory.
JFFS and XIP.

• POSE need substantial modification to port.
• Smaller footprint. 64K for OS and apps?

2002-10-28 David Yang, NTU, Singapore 25

Part II
The Key of the Bluetooth

• Understand BlueZ and Openbt.
• The Bluetooth and USB
• Design improvement for Openbt and BlueZ

2002-10-28 David Yang, NTU, Singapore 26

Bluetooth and its Profiles

Cordless
Telephony

Intercom

TCS Binary based
profiles

Generic Access
Profiles

Service
Discovery

Serial Port
Profiles

Generic Object
Exchange Profiles

Dial-up
Networking

Fax Profile

LAN Access

File Transfer

Object Push

Synchronization

2002-10-28 David Yang, NTU, Singapore 27

Bluetooth Stacks Comparison
BlueZ (open sourced

since April 99)
1.2-2.0-pre7

Openbt (open
sourced since

May 01)
0.06-0.0.8

Affix (open sourced
since Nov 01)

0.9

BlueDrekar
(only HCI is open

sourced)
Kernel 2.4.4 and greater 2.0.x-2.4.x 2.4.x 2.2.12, 2.2.14

Host/ target
platform

Host: X86 ARM
Target: in reference. CRS
just added in.

Host: X86, Arm, MIPS,
PowerPC
Target: support most of chip

Host: X86
Target;Same as BlueZ

Host: X86
Target: N.A.

Bluetooth
Protocols

HCI, L2CAP, SDP,
RFCOMM (modifying),
HCI-UART, HCU-USB

HCI, L2CAP, SDP,
RFCOMM, HCI-UART,
HCU-USB, SCO
(Incomplete).

HCI, L2CAP,
RFCOMM, SDP,

HCI, L2CAP,
SDP, SCO,
RFCOMM, HCI-
UARTAPI Hardware abstraction Standard Unix device driver Standard Unix device

driver
Custom lib API

License GPL Axis OpenBt Stack License GPL AlphaWorks,

Utility L2test, scotest, rfcommd
and hcitool

User mode, Bttest, good to
understand the openbt

No N.A.

Status In progress Minor changes In progress N.A.

SDP The SDP is ported from the
Axis.

Server, XML database. The SDP is ported from
the Axis.

Server dynamic
database

Profile Serial Port
Dialup networking
LAN Access

GAP, Serial Port
Dialup, LAN Access,
OBEX, synchronization

Serial Port
Dialup,
LAN Access
OBEX

N.A.

2002-10-28 David Yang, NTU, Singapore 28

The Further Comparison of Bluez
and Openbt

BlueZ (1.2 and 2.0 pre 6) Openbt (0.0.2 -0.0.8)

The hci layer is based on the kernel raw socket or raw HCI socket.
Emulating TTY functionality would completely inefficient and less
flexible.

To keep the legacy applications work with Bluetooth, similar
approach as Affix. The raw socket lack of support from the upper
layer.

Support as many devices on one PC. VTun by replacing the UDP with
L2CAP. Utility like Hciattach is handy for UART and Blue PIN is
supported with GUI.

First open source Linux Bluetooth stack. Large amount of CVS
modification and verification, more versions released.
BCSP protocol is always supported.

Porting RFCOMM engine, SDP from Openbt. For networking protocols "char device / ioctl" interface is not as
good as "sockets”.

Some cross compiling issues are just started to discuss. X86 and
StrongARM processor.

Verified with X86, Arm, MIPS, PowerPC.

Openbt implements SDP in the kernel space is result of the lack of the
right interface in the user space.

Provide kernel Mode and user mode. Driver for data and control.

Though included in the 2.4.4 kernel and above. It is hard to use for the
microcontrollers without MMU, which are best served by 2.2.x.

Certified and verified with the working product. Bluetooth Access
Points running embedded Linux (2.0.36).

Raw socket directly interfaced to L2CAP ioctls are available to support HCI commands

2002-10-28 David Yang, NTU, Singapore 29

The Architecture Overview of
Openbt and BlueZ

- -

- Glue Layers for stack -

"APPLICATION" (here:ttyBT)

TOP | bt_in_top() | bt_out_top() |

^ |
| V

T H E S T A C K

^ |
| V

--
BOTTOM | bt_out_botoom()| bt_out_bottom()|

--
"PHYSICAL DRIVER" (here: serial driver)

- -

2002-10-28 David Yang, NTU, Singapore 30

TTY Driver in Openbt

• Default or emulation • Stacked Bluetooth Used

tty_io tty_io

bt serial bt serial

n_tty

bt_ldisc

n_ttyn_tty

bt_ldisc

2002-10-28 David Yang, NTU, Singapore 31

Further Explanations for Openbt
• Openbt Stack the driver by telling the serial port to switch from N-tty

line discipline to the BT line discipline.
“int bt_idlisc=N_BT; ioctl(fd,TIOCSETD, &bt_ldisc);”

• N_BT uniquely identifies the BT line discipline among all other line
disciplines registered in the kernel. The identifier tell tty to used BT as
its upper layer interface.

• The TIOCSETD ioctl replaces the serial ports’ current line discipline
with the one specified. It also causes the Bluetooth Linux discipline's
open routine to be called, passing in the serial port’s tty to Bluetooth.

• Driver for data, ttyBT0 and for control ttyBTC0. User mode and kernel
mode.

• Avoid the filtering for special char, and messing the data while
switching between BT and serial, E.g. try cat on /dev/ttyS0 with binar,
use Raw tty “ioctl(fd, TCGETS, &t); cfmakraw(&t);”

2002-10-28 David Yang, NTU, Singapore 32

The PPP Using Openbt
1) PPP over serial (standard way):

user app (pppd)
/ \

-------| |------------------
\ /

| tty |
<----> ldisc (PPP)
tty driver

/ \
-------| |------------------

\ /
UART

2) PPP over bluetooth:

user app (pppd)
/ \

-------| |------------------
\ / ttyBT0

| tty | ldisc-> PPP ldisc

--
| tty driver | (bluetooth driver)

| | <-------
| BT STACK | <----- | ADDED
| | <--- | |
------------- | | |
| ttyS0 | V V V
| ldisc-> BT ldisc

--
| tty driver | (serial driver)

/ \
--------| |------------------

\ /

UART

2002-10-28 David Yang, NTU, Singapore 33

Traces for Explanation
Openbt:
• [root@desktop12 experimental]# echo hallo > /dev/ttyBT0

[root@localhost experimental]# cat /dev/ttyBT0

hallo

• [root@desktop12 bluetooth]# btd --reset -u /dev/ttyUB0 --speed 115200 -r
client

… …
• The kernel trace using “tail –f /var/log/messages”. It emulates the ttyUB0.
Nov 27 14:20:00 desktop12 btd: Initiating signal handler

Nov 27 14:20:05 desktop12 btd: Opening dev /dev/ttyUB0

Nov 27 14:20:05 desktop12 btd: Opening dev /dev/ttyBTC

BlueZ:
• While “echo hallo > /dev/pts/4”, “cat /dev/pts/4 hallo” displays

• To start ppp, “ rfcommd –s –n na” on the server and “ rfcommd –n –na
[server_bd_address]” on the client. It uses the /dev/pts/ to communicate.

Mar 2 16:21:26 localhost pppd[1845]: Connect: ppp0 <--> /dev/pts/4

Mar 2 16:21:26 localhost kernel: PPP BSD Compression module registered

… …

Mar 2 16:21:27 localhost pppd[1845]: remote IP address 192.168.0.2

2002-10-28 David Yang, NTU, Singapore 34

Further explanation for BlueZ
• Current BlueZ interface is clean and simple. Stack uses SKBs, the kernel socket buffer ,

on all layers.
• SKB is different from kmem_alloc, the kernel-memory allocator, because it is

SLABified, which means that there is a cache for SKB heads and allocations are
optimized. In addition, SKBs provide lots of optimized functions and queues.

• “struct sk_buff_head rx_q;
struct sk_buff_head raw_q;
struct sk_buff_head cmd_q;
struct sk_buff *sent_cmd; … …
int (*send)(struct sk_buff *skb);” in hci_core.h

• While in BlueZ, socket is the only direct interface to L2CAP, which can be used in user
and kernel spaces. Sockets always present in the kernel, for instance, in the init/main.c,
they are initialized unconditionally, which make sense because even pipes are
implemented using sockets.

• Adding BlueZ support to any existing socket based programs is very easy. BlueZ used
AF_BLUETOOTH instead of AF_INET whenever a socket call is made.

2002-10-28 David Yang, NTU, Singapore 35

Bluetooth and USB
• Due to speed limitation of UART 115kbps << max BT radio

723.2kbps. The H4, USB, is commonly used.
• The confusion among USB drivers. In 2.4.* there exist two drivers for

UHCI host controllers: this one from "UHCI support" ,“usb-uhci.o”
and the one from "UHCI alternate (JE) support”, “uhci.o”.

• They are very similar. But the best one to work with BlueZ stack is
the ,“usb-uhci.o” not the default “uhci.o”

• bluetooth.o is claimed to supports 256 different USB Bluetooth device.
However it does not work together with BlueZ, during the hot plug, it
has a higher priority than usb-uhci.o due to naming sequence. The best
way is to disable this module for BlueZ.

• The BlueZ stack development encountered of the USB zero packet
length problem. “ urb->transfer_flags = USB_QUEUE_BULK”
�“urb->transfer_flags = USB_QUEUE_BULK |
USB_ZERO_PACKET” in the hci_usb.c file.

2002-10-28 David Yang, NTU, Singapore 36

Known Issues:

• Openbt, ioctl calls specific to the BT driver have global
effects. E.g. if it needs reinitialize the stack, it could
interrupt another application’s data transfers. Interface
L2cap. The emulation is complicated

• Openbt, lack of control over the RFCOMM link. The
winner is whoever issues ioctl call last.

• BlueZ might have the tty emulation for legacy application.
RFCOMM and SDP move into kernel space?

• Dynamic database used in Openbt and BlueZ in stead of
hard coded XML database.

2002-10-28 David Yang, NTU, Singapore 37

Conclusion and Future Works
• Linux is really a handy platform for wireless embedded system for tight budget and

schedule project.
• Go hardware? Open HDL, open system C, handle C. It can be used for the run time

reconfiguration of Linux and the hardware.
• Go real time? Time critical, e.g. TDMA. Run- time re-configurable.

– Two Approaches to Real-Time Linux
• Modify Linux to include a Real-Time scheduler. Eg. MontaVista
• Put Regular Linux on top of a Real-Time operating system (RTOS). Eg.

RTLinux , Lineo. They achieved ms jitter, which is suitable for majority of the
RT apps. For high performance RT app, it need to have ns jitter.

• Go GNU Radio?
– It’s a free software defined radio
– A platform for experimenting with digital communications and for signal

processing on commodity hardware

2002-10-28 David Yang, NTU, Singapore 38

Q & A
A Reason for Smile

