Universal Function Call Tracing

Olaf Dabrunz
odabrunz@fctrace.org

e
Why Function Call Tracing?

- Quickly provides information about program execution
- Software integration (distributions, ISVs)

- Technical support

- Contributing developers

- Testing (coverage, QA, beta testing)

+ Optimization (profiling)

- Software documentation

- Debugging aid: shows actual program behaviour

- Security audit (code analysis, esp. of modularized
software)

- etc...

Example: Fixing Software Bugs

- A customer has data corruption in his database app
- Simple testcases do not reproduce the corruption
- Bug in the application, the database or the kernel?

- Traditional code review takes time: huge number of
functions, which are actually used?

Fixing Software Bugs with Tracing

- Tracing can show the participating functions, possibly
with parameter values

- Follow execution path (maybe with data) through functions
- Easily find the used plugins, registered functions etc.

- Run further tests, maybe follow the code step-by-step while
watching the trace

Example: Security Analysis

- Review security problems in an open source app
- Problematic use of userspace data in some function?

- Need to read and follow the code as the data is
passed through many functions

I ————
Security Analysis with Tracing

- Run testcase against the code while tracing it
- The trace will show the function calls and parameters

- Often sufficient to follow data across many function
calls

- No need to follow data manually
- Could even be used to test for misuse scenarios

- Also could help checking coverage and correctness of
code annotations for source code checkers (such as
splint)

Example: Technical Support

- Customer has a problem

- Support does not have the hardware or the
configuration to reproduce the problem

- Customer provides a kernel stack trace or a crash
dump

- A stack trace or crash dump can only show the state
when the problem is detected; if the problem was
caused earlier on, there is no information about that

- Support and development try to find the root cause by
asking the customer to run test cases until the root
cause is isolated

Technical Support uses Tracing

- Support can ask the customer to trace the problematic
process(es)

- The function call history (with parameter values) may
show where the root cause is

- Even when testcases need to be run, a trace during
the testcase can generate more information, so that
probably less testcases need to be run

Universal Function Call Tracing

-]
Universal Function Call Tracing

- Always be available, reliably
- On all hardware platforms
- With all kernel versions
- For all programs

- No setup is required (such as compiled-in
instrumentation)

- Simply start trace and look at the results (like strace)
-+ Show all function calls

+ One-stop solution: cover as many use cases as
possible with a simple mechanism

- Least possible overall slowdown even when multi-
threading

Some Tools related to Tracing

Some Tools related to Tracing

- strace, Itrace)
- Perf, Oprofile

- UST » Userspace
- Valgrind

- GDB),
- LTTng
- DTrace > Kernelspace

- Systemtap
- ftrace

- fctrace)

strace and ltrace

- strace
- Trace system calls of one or more processes

- Uses specific facility for system call traces
ptrace(PTRACE_SYSCALL)

- ptrace() is slow: it requires context switches from the tracer
(userspace) to the kernel to the traced process (userspace)
and back for every action

- ltrace
- Trace library and system calls of one or more processes
- Hooks the shared library linking mechanism
- May miss library function calls when they are called differently
- Cannot trace internal functions

13

14

I —————
Perf, Oprofile

- Sample execution of kernel functions each time a
hardware event fires, e.g. high-resolution timer (TSC)

- Perf can also use tracepoints as event sources

- Gather statistics: how much time spent in which
function

- Does not “follow” process execution: not always clear
when a function is called

- Stack analysis helps to find this out, but uses more processing
time and fails for tail call optimizations

- May miss called functions, when called and left within
sampling period

Vaigrind

- Userspace simulator executing userspace programs
- Follows variable usage and mis-usage

» Checks library calls and mis-usage, esp. for memory
allocations

- No working trace module so far
+ Not quick enough for programs in production use

e
GDB

- Breakpoints

- Watchpoints

- Macros

- No built in function call tracing

Linux Trace Toolkit

- Instrument by patching source code

- Patch inserts calls in several kernel functions
- Cannot be disabled

* 3% - 4% slowdown when LTT is unused

- Kernel changes quickly: maintenance of
Instrumentation patch is work-intensive

- Not targeted at tracing all functions

Modern Tracing Tools

Modern Tracing Tools

- strace, Itrace)
- Perf, Oprofile

- UST » Userspace
- Valgrind

- GDB),
- LTTng
- DTrace > Kernelspace

- Systemtap
- ftrace

- fctrace J

I ————
Linux Trace Toolkit next generation

- Use intrumentation with “Kernel Markers”
- “Kernel Markers” are special instruction sequences

» a load from a direct address, test, and a conditional branch over a call sequence

- Instrumentation is part of kernel code and compiled in

- Can enable and disable instrumentation by changing
“Immediate Value” in instruction sequence

- Runtime overhead small when disabled

- Developers are required to instrument their functions
with standard kernel markers

- Not targeted at instrumenting all function calls, but to
gather information from “points of interest”

- UST does the same for userspace

I ————
DTrace / Systemtap

- Use intrumentation with breakpoints (on x86: INT3)
- Instrumentation added by overwriting opcode
- Can disable instrumentation by restoring opcode

- Original instruction is copied and single-stepped when
breakpoint triggers

- Instrument all functions (limited set of functions
possible, but not for complete trace)

Example Function

<cache sysfs init>:
cmpw $0x0,0xc03cd838
push %ebx
je <cache sysfs init+0x45>
mov $0xc0356dd0, 3eax
call <register cpu notifier>
mov $0xc03866c0, 3eax
call < first cpu>

jmp <cache_sysfs init+0x3e>
mov $0x2, %edx
mov %ebx, %ecx

mov $0xc0356dd0, seax

call <cacheinfo_cpu callback>
mov $0xc03866c0, sedx

mov %ebx, $eax

call <__next cpu>

cmp S$0x1f, %eax

mov %eax, sebx

jle <cache sysfs init+0x21>
pop %ebx

Xor %eax, $eax

ret

Example Function with Annotations

<cache_sysfs_init>:
cmpw $0x0,0xc03cd838
push %ebx
je <cache sysfs init+0x45>
mov $0xc0356dd0, seax
call <register cpu notifier>
mov $0xc03866c0, 3eax

call < _first cpu>
jmp <cache sysfs init+0x3e>
mov $0x2, %edx
mov %ebx, %secx
mov $0xc0356dd0, seax
1//////]

{

call <cacheinfo_cpu_ callback>
mov $0xc03866c0, 3edx

W/

mov %ebx, $eax

call <__next_cpu> >
cmp S0x1f, %eax

mov %eax, sebx

jle <cache sysfs init+0x21>

pop $ebx

Xor %eax, $eax

ret -

~

o~ lumps/branches within the function
— jumps/branches to other functions

24

DTrace / Systemtap Instrumentation

<cache_sysfs_init>:

$0x0,0xc03cd838
push $ebx
je <cache sysfs init+0x4a>
mov $0xc0356dd0, seax
call <register cpu notifier> >
mov $0xc03866c0, 3eax
call < _first cpu> T
jmp <cache sysfs init+0x43>
mov $0x2,%edx
mov %ebx, $ecx
mov $0xc0356dd0, seax I
call <cacheinfo_cpu_callback> -
mov $0xc03866c0, 3edx
mov %ebx, %$eax
call <__next_cpu> >
cmp S0x1f, %eax
mov %eax, 3ebx /
jle <cache sysfs init+0x26>
pop $ebx
Xor %eax, $eax
ret .
> jumps/branches within the function — =———fe- |nstrumentation
— jumps/branches to other functions

Call Tracing with DTrace / Systemtap

- Complete function call trace slows down system

- When Dtrace was new we tested a system with
probes at the beginning of every function and the
system slowed down to virtual halt

- Approach unusable for complete call trace

- S0 should we piece together a call trace?

- Many selective call traces (each with a small footprint)
need to be run to cover the whole call chain

- Reproducing the same call chain can be an issue,
especially when trying to reproduce a bug

ftrace

- Uses profiling instrumentation
- Instrumentation added by compilation with “gcc -pg”
-+ Can disable instrumentation by overwriting with NOPs

- Instruments all functions (can limit, but not for
complete trace)

ftrace Instrumentation

<cache_sysfs_init>:

call <ftrace> —
cmpw $0x0,0xc03cd838
push $ebx

je <cache sysfs init+0x4a>

mov $0xc0356dd0, seax

call <register cpu notifier> >
mov $0xc03866c0, 3eax

call < _first cpu> T
jmp <cache sysfs init+0x43>

mov $0x2, %edx

mov %ebx, $ecx

mov $0xc0356dd0, seax

call <cacheinfo_cpu_callback> -
mov $0xc03866c0, 3edx

mov %ebx, %$eax

call <__next_cpu> >
cmp S0x1f, %eax

mov %eax, $ebx

jle <cache sysfs init+0x26>

pop $ebx

Xor %eax, $eax

ret .

> jumps/branches within the function = =g [nstrumentation
— jumps/branches to other functions

ftrace Instrumentation Deactivated

<cache_sysfs_init>:
nop
nop
nop
nop
nop
cmpw $0x0,0xc03cd838
push %ebx
je <cache sysfs init+0x4a>
mov $0xc0356dd0, seax
call <register cpu notifier>
mov $0xc03866c0, 3eax
call < _first cpu>

jmp <cache sysfs init+0x43>
mov $0x2, %edx
mov %ebx, $ecx

mov $0xc0356dd0, seax
call <cacheinfo_cpu_ callback>
mov $0xc03866c0, 3edx

Jl

\

mov %ebx, $eax
call <__next cpu>
cmp S0x1f, %eax
mov %eax, $ebx

\

> jumps/branches within the function
— jumps/branches to other functions

Call Tracing with ftrace

- Complete function call trace causes overall system
slowdown

- “Just calling mcount() and having mcount() return has
shown a 10% overhead.” Steven Rosted

- Actual overhead with real trace code is much higher
- Inline functions are not instrumented

- Piecing together a complete trace from selective call
traces has the same issues as for DTrace / Systemtap

fctrace

- Use intrumentation with breakpoints (on x86: INT3)
- Instrumentation added by overwriting opcode
- Can disable instrumentation by restoring opcode

- Original instruction is copied and single-stepped when
breakpoint triggers

- Instrumenting a code location is atomic: no expensive
synchronization is needed (only light-weight locking for
meta-data structures)

- Instrument only the function that the traced
process currently executes

31

fctrace Instrumentation

<cache_sysfs_init>:

cmpw $0x0,0xc03cd838

push %ebx

je <cache sysfs init+0x4a>
mov $0xc0356dd0, seax

int3 <register cpu notifier>
mov $0xc03866c0, %eax

int3 < _first cpu>

jmp <cache sysfs init+0x43>
mov $0x2, %edx

mov %ebx, %ecx

mov $0xc0356dd0, 3eax

int3 <cacheinfo cpu callback>
mov $0xc03866c0, %edx

mov %ebx, $eax

int3 < next cpu>

cmp $S0x1f, %eax

mov %eax, $ebx

jle <cache sysfs init+0x26>
pop $ebx

XOor %eax, seax

int3

—

> jumps/branches within the function
jumps/branches to other functions

—- |nstrumentation

32

fctrace Single Stepping through a Call

<cache_sysfs_init>:

cmpw
push
je
mov
int3
mov
int3
jmp
mov
mov
mov
int3
mov
mov
int3
cmp
mov
jle
pop
XOor

int3

$0x0,0xc03cd838

%ebx
<cache sysfs init+0x4a>
$0xc0356dd0, 3eax
<register cpu notifier>
$0xc03866c0, %eax
<_first cpu>
<cache sysfs init+0x43>
$0x2, %edx

%ebx, $ecx
$0xc0356dd0, 3eax
<cacheinfo cpu callback>
$0xc03866c0,%edx

%ebx, $eax

<__next_ cpu>

$S0x1f, %eax

%eax, $ebx
<cache sysfs init+0x26>
$ebx

%eax, seax

—- |nstrumentation

33

fctrace Leaving a Function

<cache_sysfs_init>:

cmpw
push
je
mov
call
mov
call
Jmp
mov
mov
mov
call
mov
mov
call
cmp
mov
jle
pop
XOor
ret

$0x0,0xc03cd838

%ebx
<cache sysfs init+0x45>
$0xc0356dd0, seax
<register cpu notifier>
$0xc03866c0, 3eax

< _first cpu>
<cache sysfs init+0x3e>
$0x2, %edx

%ebx, $ecx
$0xc0356dd0, seax
<cacheinfo_cpu_ callback>
$0xc03866¢c0,%edx

%ebx, $eax

<__next_ cpu>

S0x1f, %eax

%eax, $ebx
<cache sysfs init+0x21>
$ebx

%eax, $eax

|

B
%

W/

> jumps/branches within the function
— jumps/branches to other functions

fctrace Entering the Next Function

<register cpu notifier>:
push $ebx

mov %eax, $ebx

mov $0xc035a0fc, %eax

int3 <mutex_]_ock> —
mov %ebx, $edx

mov $0xc041ee90, %eax

int3 <raw_notifier_chain_register> —
mov %eax, $ebx

mov $0xc035a0fc, seax

int3 <mutex_unlock> —
mov %ebx, $eax

pop gebx

—g- |nstrumentation

Call Tracing with fctrace

- Complete function call trace does not cause overall
system slowdown

- Other tasks will rarely execute the instrumented function
- The traced task executes the instrumented function:
it will be slowed down
- No actual speed measurements for the traced task yet

- Speed optimizations for traced task possible
- Lazy cleanup
- Hardware support

- Tracing inline functions will be possible

0|
Benefits of fctrace

- Instrumentation does not exist when off

- When on
- No overall system slowdown
- Slows down traced tasks only

- No special compilation or setup needed
- Available / portable to all architectures

- Portable to other operating systems

- As easy to use as strace

- Will trace function parameters

fctrace Status

- fctrace prototype exists
- fctrace initially used kprobes
- It worked as long as traced code does not take locks

- Kprobes does not support dynamic changes of probes
while the traced code holds spinlocks

- Needed to write a dynamic version of kprobes:
vprobes was started

- pre-allocate memory for all needed probes
- never schedule() during probe activation or deactivation

38

I ————
vprobes Status (1/2)

- Used kprobes as starting point
-+ Code has changed a lot

- New memory management
- New locking, but needs more work
- Dropped features that fctrace will replace: e.g. jprobes

- Meanwhile kprobes changed a lot upstream

- About 200 patches until end of 2009:
> Consolidation of 64 bit and 32 bit code

> Fixes, features and cleanups in the probe engine
- Most patches are relevant to vprobes

— Needed to find a way to integrate kprobes patches
In vprobes, and to develop vprobes alongside kprobes

I ————
vprobes Status (2/2)

- It proved too error-prone to integrate kprobes patches:
- Most patches needed manual merging

- Several patches needed to be analyzed to understand how
they apply to vprobes, e.g. when related to locking or probe
lifetime and re-use

- Vprobes itself was not ready for testing, so integrated patches
could not be tested either

- Too many errors would go unnoticed

— A patch management tool is needed to track
patches, and to connect upstream patches to vprobes
patches so porting problems can later be found

- | started working on improvements for Git and TopGit, and

started writing a patch management frontend for vim that uses
» Git and TopGit

40

What’s next?

- Develop vprobes alongside kprobes: current patch
management tools are still insufficient

- Finish vprobes
- finalize implementation of sped-up memory access checks
- interfaces probably final
- Use vprobes in fctrace
- delegate probe pool handling to vprobes
- performance optimizations

- Show function call parameters
- Apply vprobes/fctrace mechanism to userspace

The Future: After The Prototype

e
Reducing Detail through filtering

- Complete call traces contain too much information

- fctrace can filter the traces

- The uninteresting information can incrementally be
filtered out

Other tracing mechanisms

- Hardware breakpoints
- Intel Branch Trace mechanism

Hardware Breakpoints

- HW breakpoints are much quicker than modifying
code

- But only few HW breakpoints are available

- Up to several tens of call sites need to be
iInstrumented in the kernel — userspace programs may
have more

- HW breakpoints are not available on some platforms

— Not a universal tracing mechanism

Intel Branch Trace Mechanism

- On Pentium 6: taken branches generate exception
- On Pentium 4: taken branches recorded on a stack
- Promises less overhead than INT3

- Does not know if branch leaves the function (function
call) or not (loop, conditional, ...) -- this would require
hints in the machine code

- All branches are recorded, CPU is often interrupted

- May perform much worse than INT3, esp. on inner
loops

- Not available on other platforms (PPC, s390, ARM, ...)

More information

- Project homepage http://fctrace.org/
- Author: Olaf Dabrunz <odabrunz@fctrace.org>

http://fctrace.org/
mailto:odabrunz@fctrace.org

More information

- Project homepage http://fctrace.org/
- Author: Olaf Dabrunz <odabrunz@fctrace.org>

Questions ?

http://fctrace.org/
mailto:odabrunz@fctrace.org

00|
DProbes

- Userspace package to compile probes
- Compiled probes are loaded into the kernel

- Kprobes infrastructure triggers execution of compiled
dprobes

Kernelspace and Userspace

- Separate Memory Regions
- Kernel can access both Userspace and Kernelspace

- Userspace application can directly access only its own
Userspace memory

- A process can execute in Userspace or in
Kernelspace

- When a process enters or leaves the Kernel, a context
switch is necessary

50

Example Function

c010d93a <cache sysfs init>:
c010d93a:
c010d941:
c010d942:
c010d943:
c010d945:
c010d9%4a:
c010d94f:
c010d954:
c010d959:
c010d95b:
c010d960:
c010d962:
c010d967:
c010d96c:
c010d971:
c010d973:
c010d978:
c010d97b:
c010d97d:
c010d97f:
c010d980:
c010d982:

66 83 3d 38

00
53
74
b8
el
b8
e8
eb
ba
89
b8
e8
ba
89
el
83
89
Te
5b
31
c3

3a
do
Oe
cO
7f
1d
02
do9
do
7c

ds
78
£8
c3
dc

cO

6d
16
66
fd

00
6d
fc
66

fd
1f

35
03
38
O0b

00
35
ff
38

0b

d8 3c c0

c0
00
c0
00

00
cO
ff
c0

00

cmpw

push
je
mov
call
mov
call
Jmp
mov
mov
mov
call
mov
mov
call
cmp
mov
jle
pop
Xor
ret

$0x0,0xc03cd838

%ebx

c010d97f <cache sysfs init+0x45>
$0xc0356dd0, seax

c013ef5d <register cpu notifier>
$0xc03866c0, seax

c0lcd6d8 < first cpu>

c010d978 <cache sysfs init+0x3e>
$0x2, %edx

%ebx, %ecx

$0xc0356dd0, seax

c010d5e8 <cacheinfo cpu callback>
$0xc03866¢c0, 3edx

%ebx, %eax

c01lcd6f0 < next cpu>

$S0x1f, %eax

%eax, %ebx

c010d95b <cache sysfs init+0x21>
%ebx

%eax, $eax

51

Example Function

c010d93a <cache sysfs init>:

c010d93a:
c010d942:
c010d943:
c010d945:
c010d94a:
c010d94f:
c010d954:
c010d959:
c010d95b:
c010d960:
c010d962:
c010d967:
c010d96c:
c010d971:
c010d973:
c010d978:
c010d97b:
c010d97d:
c010d97f:
c010d980:
c010d982:

cmpw
push
je
mov
call
mov
call
jmp
mov
mov
mov
call
mov
mov
call
cmp
mov
jle
pop
Xor
ret

$0x0,0xc03cd838

%ebx

c010d97f <cache sysfs init+0x45>
$0xc0356dd0, 3eax

c013ef5d <register cpu notifier>
$0xc03866¢c0, 3eax

c0lcd6d8 < _first cpu>

c010d978 <cache sysfs init+0x3e>
$0x2, %edx

%ebx, %ecx

$0xc0356dd0, seax

c010d5e8 <cacheinfo cpu callback>
$0xc03866c0, ¥edx

%ebx, %eax

c0lcd6f0 <_ next cpu>

S0x1f, %eax

%eax, %ebx

c010d95b <cache sysfs init+0x21>
%ebx

%eax, %eax

52

Example Function with Annotations

c010d93a <cache_sysfs init>:

c010d93a: cmpw
c010d942: push
c010d943: je
c010d945: mov
c010d94a: call
c010d94f: mov
c010d954: call
c010d959: jmp
c010d95b: mov
c010d960: mov
c010d962: mov
c010d4967: call
c010d96c: mov
c010d971: mov
c010d4973: call
c010d978: cmp
c010d97b: mov
c010d97d: jle
c010d97f: pop
c010d980: Xor
c010d982: ret

$0x0,0xc03cd838

%ebx

c010d97f <cache sysfs init+0x45>
$0xc0356dd0, seax

c013ef5d <register cpu notifier>
$0xc03866c0, seax

c0lcd6d8 < first cpu>

c010d978 <cache sysfs init+0x3e>
$0x2, %edx

%ebx, %ecx

$0xc0356dd0, seax

c010d5e8 <cacheinfo_cpu_ callback>
$0xc03866c0, sedx

%ebx, %eax

c01cd6f0 <_ next_ cpu>

S0x1f, %seax

%eax, %ebx

c010d95b <cache sysfs init+0x21>
%ebx

%eax, $eax

start of function

branch within the current function
jump/call to other function

jump/call to other function
branch within the current furlction

jump/call to other function

jump/call to other function

branch within the current function

jump/call to other function

	Title-Burst
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

