
mcelog
Memory error handling in user space

Sept. 2010

Andi Kleen

Linux Kongress 2010

2

Trends

Many cores need more memory

Important workloads need a lot of memory

Maximum memory capacity growing quickly

More memory means more memory errors

3

Error basics

Uncorrected versus corrected errors
Data is lost or
Error happened, but was corrected

Hard versus soft (transient) errors
Bit got flipped once or
Bit is permanently broken

For corrected and soft errors trends are important
Corrected error rate is expected
Better call them “events”

Clusters make uncommon errors common
Large machines do to a lesser degree too

4

Memory overview

CPU

Controller

DIMM DIMM

Columns

Rows

RankRank
DIMM has ranks
and banks and

glue logic

DIMM bank

Cell

5

What can go wrong in memory?

Radiation flipping bits

Voltage fluctuations by the power supply

Silicon breaking down
Cells, Columns, Banks, Dimms, Controllers

Lost information in data transfers

...

In general the more memory the more likely are errors
And the trend is more and more memory

Cheap memory also has more errors

Longer uptime accumulates more soft errors.

A Realistic Evaluation of Memory Hardware Errors and
Software System Susceptibility: U-Rochester

Evaluated 212 servers over 9 months

7

Mcelog

User space daemon decodes, processes MCE events for known CPUs
Both corrected and uncorrected

Standard component of 64bit x86 distributions for many years
Now on 32bit too

Traditionally cronjob, now daemon
Daemon mode allows to keep state
Many new features enabled by this

To get all the new features make sure to have the daemon running!

Can run offline to decode panic messages (mcelog –ascii)

mcelog needs to support the CPUs
Not all features available with all CPUs
Generally better with integrated memory controller

8

mcelog overview

mcelog
daemon

CPU

9

Kernel architecture

Kernel machine check handler
Retrieves error information from hardware
Recovers or panics for uncorrected errors

Handles uncorrected errors directly
Modern kernels able to recover transparently from some cases
Or kill the process with the corrupted data
If error is not contained stop the system

Corrected errors are logged and passed to user space
Through /dev/mcelog error records

10

High level errors

Low level errors contain a lot of information
Needed by experts for analysis

But can be daunting to understand
Also not all errors are interesting
Interesting are error trends or serious errors.

Goal of mcelog is to provide higher level error analysis

/var/log/mcelog log file for details

“one liners” in syslog
Based on thresholds and specific actions

11

Predictive Failure Analysis

Watching corrected errors and try to guess future trends

Observation:
Hard uncorrected errors are often preceded by corrected errors

Stop using component in advance

All error counts have to be aged
Otherwise corrected transistent errors would lead to incorrect actions

Can be done for many units:
Memory page, DIMM, socket
Harddisks (e.g. SMART)
Full computer
Other hardware

12

Hardware memory protection mechanisms

Lowend:
No checksums for storage, limited protection of transfers

ECC: Detect 2bit, Correct 1bit (SECDED)
Needs ECC memory and server grade memory controllers
Scrubbing

Lockstep, Chipkill
Handle broken rank or DIMM with sophisticated encoding
Needs symmetric DIMM configurations, slower

DIMM, rank sparing

Highend: Full memory mirroring
Handles near all errors transparently
Needs twice as much memory

 Cheap

Expensive

13

Stuck bits

Hardware redundancy handles most problems

Interesting case: single stuck bits in DIMM
Corrected by ECC SECDED
But error stays around in DIMM
If there's another bit flip in unit it turns into a uncorrected (detected) error

Reasonably common occurrence
Rest of the DIMM and system is often fine

Moving to a spare or mirroring can avoid these problems
But it's a big hammer

14

Bad page offlining

Account errors per page
Accounting in daemon on demand (~64bytes/4K)

When page reaches error threshold in time period stop using page
Default offlining on 10 corrected events per 24h
Avoids triggering on transient soft errors

Handle stuck bits efficiently in software
Does not work well for larger scale corruptions
But handles common situation without impacting any redundancy

Compliments hardware memory protection and extends coverage
Avoids service interruptions: DIMM with a few stuck bits can be used without

significant loss

15

Kernel soft offline code

mcelog daemon asks kernel to stop using a page

Transparent to applications, no killing

Kernel soft offlines page
User data is migrated transparently to a new page
Cached data is dropped
Free pages are marked bad

Goal is to be able to offline 90+% of pages in common workloads
Will never be 100%

Studies using “page-types” tool for different enterprise workloads
Largest gap was huge page support, now nearly addressed

Basic code available in 2.6.33 or SLES11-SP1

16

Extended Cache Error Handling

x86 CPUs have large caches

Caches have internal error detection and correction mechanisms

CPU reports when redundancy runs low
Does not necessarily mean CPU is broken, could be external causes
But caches with no redundancy may have unrecoverable errors in the future

mcelog offlines cores using these caches
Stop using cores to stop using the caches
System will continue running with reduced capacity
Logs warning to system log

Can be customized with cache-error-trigger

Core

MLC

Core

MLC

Core

MLC

Core

MLC

Core

MLC

Core

MLC

Core

MLC

Core

MLC

Core

MLC

Core

MLC

LLC

17

Error accounting

Individual errors are not that interesting
Errors often come in bursts and individual errors in a burst are not interesting
Large clusters can generate a lot of data, which is difficult to process

Daemon accounts memory errors per component
Currently DIMM*, socket, page*
Reports “n errors in last x hours on component k”
Triggers when thresholds are exceeded
Accounting in memory only

Option to disable individual error logging for less data
Can be important in clusters!

*If reported by CPU

18

Querying the database for memory errors

mcelog --client
Memory errors
SOCKET 0 CHANNEL 2 DIMM 1
corrected memory errors:
 3 total
 3 in 24h
uncorrected memory errors:
 0 total
 0 in 24h

SOCKET 0 CHANNEL 0 DIMM 0
corrected memory errors:
 3 total
 3 in 24h
uncorrected memory errors:
 0 total
 0 in 24h

19

Triggers

20

mcelog DIMM trigger variables
THRESHOLD human readable threshold status

MESSAGE Human readable consolidated error message

TOTALCOUNT total count of errors for current DIMM of CE/UC

LOCATION Consolidated location as a single string

DMI_LOCATION DIMM location from DMI/SMBIOS if available

DMI_NAME DIMM identifier from DMI/SMBIOS if available

DIMM DIMM number reported by hardware

CHANNEL Channel number reported by hardware

SOCKETID Socket ID of CPU that includes the memory controller with the DIMM

CECOUNT Total corrected error count for DIMM

UCCOUNT Total uncorrected error count for DIMM

LASTEVENT Time stamp of event that triggered threshold (in time_t format, seconds)

THRESHOLD_COUNT Total umber of events in current threshold time period of specific type

21

Local trigger use cases

Simple
Page administrator
Alert network management system
Blink the red LED

What else is the LED subsystem good for?

Complex
In a VM cluster migrate VM away
In a HA cluster trigger a failover

Other clever solutions?

Problems
Finding a good threshold
Depends on the memory used and environment
Triggering too early can be expensive and cause unnecessary disruption

22

Future

Network management interface

Offlining of more page types

APEI support for chipset errors

Accounting for more components
PCI devices, other devices

More database functionality for errors

Better support for error tree analysis

More space efficient data structure for page accounting
Would be an interesting little project if someone is interested please contact

me.

Ideas and contributions welcome

23

Resources

Intel Software Developer's Manual: 3A/B System Programming Guide

Description of the x86 Machine check architecture

git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6

MCE development tree (hwpoison, mce4)

git://git.kernel.org/pub/scm/utils/cpu/mcelog.git

Mcelog development repository

ftp://ftp.kernel.org/pub/linux/utils/cpu/mce/

Mcelog releases

git://git.kernel.org/pub/scm/utils/cpu/mce-test.git

MCE test suite (or now part of LTP to (http://ltp.sourceforge.net)

git://git.kernel.org/pub/scm/utils/cpu/mce-inject.git

MCE injector

http://halobtes.de

More documentation about error handling

ftp://ftp.kernel.org/pub/linux/utils/cpu/mce/
http://halobtes.de/

24

Backup

25

Error sources

Machine checks from the CPU
Corrected (CMCI)
Uncorrected

NMI

PCI-Express Advanced Error Handling (AER)

ACPI4 (APEI)

Device specific
SATA errors
Network

Modern x86 systems with integrated memory controllers report memory
(usually) errors as machine checks

26

page-types on my workstation

page-types | awk ' { printf "%8s %8s %15s %30s\n",$2,$3,$4,$5 }' |
 sort -rn +1 | head
 1310720 5120 # total
 885248 3458 __________________________________
 262144 1024 ____________________n_____________ nopage
 36400 142 __RU_l____________________________ referenced,uptodate,lru
 31530 123 ___U_l____________________________ uptodate,lru
 28024 109 ___U_lA___________________________ uptodate,lru,active
 23955 93 ___U_lA____Ma_b___________________
 uptodate,lru,active,mmap,anonymous, swapbacked
 17105 66 __RU_lA___________________________ referenced,uptodate,lru,active
 7787 30 __R__l____________________________ referenced,lru
 5534 21 _______S__________________________ slab

27

mcelog triggers

Triggers
Per DIMM, per Socket, per page, cache error
Thresholds can be defined for corrected and uncorrected errors

Triggers are simple shell script in /etc/mcelog/
Executed by the mcelog daemon

Default actions:
Call “local” script if available
Page: offlining: implemented in mcelog internally
DIMM, socket: syslog. Disabled by default
Cache error: offline affected cores

Local script can do arbitary action

See paper for more details on trigger syntax

28

Mcelog versus EDAC

EDAC old style driver for chipset memory controllers
Exposes a lot of low level details
New model: memory controller in CPU
Memory errors integrated with machine checks
Handled by standard MCE subsystem

EDAC needs driver for each platform
And often accesses “non stable” registers that could change even with

steppings
Mcelog uses standardized interfaces as far as possible.

No integration with software
Requires special configuration for each board to identify components

Cannot do a lot of things that user space (mcelog) can do

29

Testing

Testing machine checks is difficult
Normal operation doesn't have enough errors
So standard Linux community testing model doesn't work very
Needs special injection support and test suites

Various injectors on software level (without hardware support)
Low level machine check injector
Page error injector for process and for arbitrary page

New injectors, test suite mce-test for testing MCEs
Testing low level handler with mce-inject
Testing hwpoison VM code in process context

Bring pages into specific states and test to see if they can be poisoned

Ongoing work to get the best test coverage

30

Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL®
PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE
FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO SALE AND/OR
USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT
OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT.

Intel may make changes to specifications, product descriptions, and plans at any time,
without notice.

All dates provided are subject to change without notice.

Intel is a trademark of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2010, Intel Corporation. All rights are protected.

	title
	Slide 2
	slde 3
	Slide 4
	Slide 5
	A Realistic Evaluation of Memory Hardware Errors and Software System Susceptibility: U-Rochester
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

